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ABSTRACT
The Messaging Layer Security (MLS) project is an IETF effort aim-

ing to establish an industry-wide standard for secure group messag-
ing (SGM). Its development is supported by several major secure-

messaging providers (with a combined user base in the billions)

and a growing body of academic research.

MLS has evolved over many iterations to become a complex,

non-trivial, yet relatively ad-hoc cryptographic protocol. In an

effort to tame its complexity and build confidence in its security,

past analyses of MLS have restricted themselves to sub-protocols

of MLS—most prominently a type of sub-protocol embodying so-

called continuous group key agreement (CGKA). However, to date

the task of proving or even defining the security of the full MLS

protocol has been left open.

In this work, we fill in this missing piece. First, we formally

capture the security of SGM protocols by defining a corresponding

security game, which is parametrized by a safety predicate that

characterizes the exact level of security achieved by a construction.

Then, we cast MLS as an SGM protocol, showing how to modularly

build it from the following three main components (and some addi-

tional standard cryptographic primitives) in a black-box fashion:

(a) CGKA, (b) forward-secure group AEAD (FS-GAEAD), which is

a new primitive and roughly corresponds to an “epoch” of group

messaging, and (c) a so-called PRF-PRNG, which is a two-input

hash function that is a pseudorandom function (resp. generator

with input) in its first (resp. second) input. Crucially, the security

predicate for the SGM security of MLS can be expressed purely as

a function of the security predicates of the underlying primitives,

which allows to swap out any of the components and immediately

obtain a security statement for the resulting SGM construction.

Furthermore, we provide instantiations of all component primi-

tives, in particular of CGKA with MLS’s TreeKEM sub-protocol
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(which we prove adaptively secure) and of FS-GAEAD with a novel

construction (which has already been adopted by MLS).

Along the way we introduce a collection of new techniques,

primitives, and results with applications to other SGM protocols

and beyond. For example, we extend the Generalized Selective De-

cryption proof technique (which is central in CGKA literature) and

prove adaptive security for another (practical) more secure CGKA
protocol called RTreeKEM (Alwen et al., CRYPTO ’20). The modu-

larity of our approach immediately yields a corollary characterizing

the security of an SGM construction using RTreeKEM.
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1 INTRODUCTION
End-to-end encrypted asynchronous secure group messaging (SGM)
is becoming one of the most widely used cryptographic applications

with billions of daily users. To help solidify the foundations of this

trend, the IETF is in the final stages of standardizing the Messaging
Layer Security (MLS) SGM protocol [8]. The effort is being lead

by industry (e.g. by Cloudflare, Cisco, Facebook, Google, Mozilla,

Twitter, Wickr and Wire) with a lot of help from academia. Thus,

MLS holds the potential to be widely deployed with in the coming

years.

Due to the expected feature set and the multi-faceted security

goals, MLS is quite complex. Furthermore, the description of MLS is
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quite monolithic. In an effort to come to terms with the complexity

(both of the construction and desired security notions) all work

formally analyzing MLS has restricted itself in scope. Besides sim-

plifying the PKI [1, 3] the trend has been to focus only on a subset of

the complete protocol. In particular, the majority of work has con-

sidered so-called continuous group key agreement (CGKA) [1, 3, 6].
First introduced by Cohn-Gordon et al. [13] (under the name "Group

Ratcheting"), a CGKA protocol is often motivated by the folklore

belief that CGKA encapsulates the essence of building SGM (not

unlike how KEMs capture the essence of PKE). Indeed, this folklore

has motivated a host of new CGKA protocols designed to improve

on the CGKA protocol implicit to MLS. Some constructions aim

for stronger security properties [3, 5], others for a more flexible

communication model [10, 23], while the construction in [1] is

optimized for certain common SGM settings.

CGKA abstracts the basic task of asynchronously maintaining

secrets in a group with an evolving set of members. To this end,

each time a member joins, leaves or updates their cryptographic
state (in an effort to heal from past compromises and defend against

future ones) a new epoch in the ongoing session is initiated. Each

epoch is equipped with a symmetric group key that can be derived

by all parties that are in the group during that epoch. The CGKA

most often identified as underpinning MLS is a protocol called

TreeKEM [7, 26]. Although, it has undergone at least 2 major iter-

ations before reaching its current version [8] it remains, at most,

a passively secure protocol, i.e., with no authenticity mechanisms

included. Moreover, it provides weaker guarantees (for the group

key) than is expected of the (encryption keys) in the full MLS proto-

col. Thus, there are clearly further significant security mechanisms

at work in MLS beyond the underlying passively secure CGKA, i.e.,

the protocol requires additional components.

Indeed, [6] extends the abstraction boundary around TreeKEM

including more of the MLS protocol to obtain an actively secure

CGKA which they dub ITK (for "Insider Secure TreeKEM"). Yet

even ITK is only a CGKA and not an SGM protocol, and so here

too there clearly remains a gulf between the full MLS protocol and

what has actually been formally analyzed in [6].

Two exceptions to the focus on CGKA are: [15], which focuses

exclusively on how to optimize the bandwidth required to updated

cryptographic state concurrent sessions with overlapping member-

ship sets, and [11], which considers the key derivation paths within

MLS. While the paths extend beyond the CGKA (even ITK) into

parts of MLS specific to messaging (e.g., key/nonce derivation for

message encryption) the work leaves much open when it comes to

a holistic understanding of MLS’s security. For example, the work

makes no statements at all about authenticity. So for example, it

leaves out the relatively involved and interdependent mechanisms

used by MLS to provide this property. Moreover, the work forgoes

any formal modeling of network communication, leaving open the

questions around how a network adversary can generally impact

the security of a session by, say, arbitrarily manipulating packets

in transit.

Our contributions
From a practice-oriented view point, the primary contribution in

this work is a rigorous security proof showing that the basic instan-

tiation of MLS is an SGM protocol. More generally, we validate the

folklore claim that CGKA embodies the essence of SGM. In doing

so, we make progress on several fronts in coming to terms with the

complexity involved in describing MLS (and other SGM protocols)

as well as defining (and proving) security for such protocols.

Black-Box Construction. In more detail, we give a black-box con-

struction of an SGM protocol from a passively secure CGKA and

several other primitives. Instantiated appropriately, the construc-

tion recovers the basic SGM protocol in MLS.
1
Besides passive

CGKA, the construction also uses a new primitive called a For-
ward Secure Group AEAD (FS-GAEAD). Intuitively, it combines

a forward secure key schedule with an authenticated encryption
with associated data (AEAD) scheme, to allow a group of sender’s

sharing a single secret to send any number of AEAD encrypted

messages with no further synchronization or communication such

that any receiver can immediately decrypt any ciphertexts they re-

ceive regardless of the order in which they are delivered. We further

abstract the key schedule of an FS-GAEAD with a new primitive

called a Forward Secure KDF (FS-KDF) which captures a generic

forward-secure symmetric key schedule supporting the derivation

of keys in any order. Due to its improved efficiency profile, our

construction of an FS-KDF has since replaced the original FS-KDF

in the MLS standard.

History graphs. We introduce the first formal security notion for

SGM.
2
Intuitively, it ensures correctness as well as privacy and au-

thenticity in the form of post-compromise forward secrecy (PCFS) [3].

That is, messages in a given epoch are both private and authenti-

cated despite arbitrary state leakage of participants sufficiently in

the past and future.

In effort to manage the complexity inherent in such a definition

we developed the history graph (HG) paradigm for defining security

of asynchronous group protocols like MLS and CGKA protocols.

The paradigm allows for an intuitive (even visual) understanding

of an otherwise complicated notion by representing the (security-

relevant) semantics of an execution as an annotated graph. This

allows cleanly separating functionality and communication model

from the security details being captured. Those details are formal-

ized as a predicate defined over HG and a particular challenge

message (or group key for CGKA). The output of the predicate

indicates if we can expect the challenge to be secure given the exe-

cution represented by the HG. This modular approach makes our

SGM and CGKA definitions easy to adapt to, say, future versions of

MLS. It also allows for more immediate comparison of the security

enjoyed by different constructions of the same type.

1
That is, the part of MLS that allows parties to manage group membership, update their

cryptographic states at will and send/recieve encrypted and authenticated messages.

We do not analyze more advanced features such as importing/exporting secrets, meta-

data hiding and so called "external commits" where an external party makes changes

to the group state.

2
We note that, concurrently to our work, [9] introduced a security notion for SGM

defined using formal verification tools which we discuss in the Related Work section

below.
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PKI. Another contribution to the analysis of MLS is a more accurate

modeling of the PKI used by MLS. With the notable exceptions

of [6, 15]), the PKI in the works of [1, 3] the analysis of (earlier

versions of) TreeKEM is based on simplified PKI models that encode

strong (but implicit) assumptions. For example, their PKI precludes

the adversary from registering ephemeral keys even for recently

corrupted parties. Instantiating this faithfully seems to require

strong authenticity checks by the PKI that may not rely on any

state that can be leaked during a compromise. In contrast, the PKI

in our work can be realized under assumptions more compatible

with E2E security. Concretely, our PKI can be realized if parties use

an out-of-band mechanism to authenticate each other’s long-term

keys while distributing ephemeral public keys via an untrusted key

server. Reflecting the MLS standard, the out-of-band authentication

mechanism is not made concrete but common instantiations include

peer-to-peer key verification via 2D bracodes or (in the enterprise

setting) certification authorities binding long term keys to a users

identity.

Security Proofs. Armed with our HG based security notions for SGM

and passively secure CGKA we prove security for the black-box

SGM protocol there by making progress not just in validating the

design of MLS but also the more general folklore motivating the

study of CGKA protocols. At a high level the proof follows the out-

line of proof for the double-ratchet in [2]. However the similarities

end there as we require new arguments and hybrids to instantiate

this outline in light of the substantial differences between the two

protocols and 1-on-1 vs. group settings they operate in.

To recover MLS security we also show that TreeKEM (as implicit

to the current version in Draft 11 of MLS) [8] is indeed a passively

secure CGKA according to our definition. In particular, in compari-

son to the TreeKEM analysis in [1], we more accurately model the

PKI, capture transcript consistency and secure group management.

Meanwhile, in comparison to the analysis in [3] we improve the

PKI model and allow for a much more capable network adversary

that can, e.g. deliver packets in different orders to different partici-

pants; a potentially unrealistic restriction for real world adversaries

that controls, say, the network connection of a user (let alone the

delivery server used by the session).

Beyond MLS and TreeKEMwe also prove that RTreeKEM [3] is a

passively secure CGKA. For this we extend the generalized selective
decryption (GSD) technique to account for encrypting keys using
the so-called updatable public-key encryption (UPKE) [3], used by

RTreeKEM. GSD lies at the heart of almost all adaptive security

proofs for CGKA protocols. To the best of our knowledge, it remains

the only technique for proving adaptive security with meaningful

security loss (e.g. quadratic in the group size). In contrast, the proof

of the ART CGKA protocol in [13] suffers from an exponential

loss in group size. Extending GSD to allow for protocols using

UPKE is likely to have applications beyond analyzing RTreeKEM as

UPKE is a very natural drop in replacement for standard PKE but

with improved forward security [20]. Indeed, recent results in [17]

construct post-quantum secure UPKE with an aim towards building

a PQ variant of MLS.

Related work. The history graph paradigm was conceived early on

in this project. In an effort to keep pace with the rapid development

of MLS the paradigm was shared with other researchers before this

work was published. Consequently, the paradigm has been used

in subsequent work appearing before this one (that cite this one

as the source of the paradigm) [5, 6].
3
Symbolic representations

of an execution, equipped with safety predicates, have been used

in [2, 14]. The GSD proof technique, introduced by Panjwani [25]

and generalized by Jafargholi et al. [19], was first applied to CGKA

protocols in [1].

The most influential precursor to TreeKEM, the asynchronous

ratchet tree (ART) protocol, was introduced byCohn-Gordon et al. [13],
focusing on adaptive security (informally sketched) for static groups.

It inspired the initial version of TreeKEM [26] which was updated

to provide secure group management in [7] and finally to its current

form in [8]. Meanwhile, ART uses an older technique called “Tree-

based DH groups” [27, 28, 30] which is also used by [21] to build

key agreement. However, TreeKEM and ART differ significantly

from [21], as discussed in [3]. TreeKEM is also related to schemes

for (symmetric-key) broadcast encryption [16, 18] and multicast

encryption [12, 24, 30]. Cremers et al. [15] note MLS/TreeKEM’s dis-

advantages w.r.t. PCS for multiple groups, and Weider [29] suggests

Causal TreeKEM, a variant that requires less ordering of protocol

messages. Finally, in concurrent work appearing recently, [9] ana-

lyzed an older version of TreeKEM (from MLS Draft 7) using formal

verification techniques.

2 PRELIMINARIES

Notation. Weuse associative arrays whichmap arbitrary key strings

to item strings. For array 𝐴 we use “.” to denote all entries. In

particular, we (implicitly) declare variable 𝐴 to be a (1-dimensional)

array and set all of its entries empty string by writing 𝐴[.] ← 𝜀.

Similarly, we declare a new 2-dimensional array 𝐵 with empty

entries by 𝐵[., .]← 𝜀. We use the shorthand 𝐵[𝑥, .]← 𝐴 to denote

that ∀𝑦 with 𝐴[𝑦] ̸= 𝜀 we set 𝐵[𝑥,𝑦] ← 𝐴[𝑦]. For subset 𝑌 ′ ⊆
𝑌 the term 𝑌 ′ ⊆ 𝐴 returns true iff 𝐴 contains all elements in

𝑌 ′; that is ∀𝑦 ∈ 𝑌 ′ ∃𝑥 : 𝐴[𝑥] = 𝑦. For vector x = (𝑥1, . . . , 𝑥𝑑 )

with all components 𝑥𝑖 ∈ 𝑋 we write 𝐴[x] to denote the vector

(𝐴[𝑥1], . . . , 𝐴[𝑥𝑑 ]). We denote the empty list with [.] and the length

of a list 𝐿 by |𝐿 |. The following special keywords are used to simplify

the exposition of the security games: req is followed by a condition;

if the condition is not satisfied, the oracle/procedure containing the

keyword is exited and all actions by it are undone. let is followed
by a variable and a condition. After evaluating the expression the

variable is assigned with the value that satisfies the condition, if

such value exists, and ⊥ otherwise. chk is followed by a condition;

if the condition is not satisfied, the oracle/procedure containing the

keyword returns false, otherwise the next instruction is executed.

3 FORMAL DEFINITION OF SECURE GROUP
MESSAGING

In this section we formally define secure group messaging (SGM).

Specifically, the formal syntax of SGM schemes is introduced in

Section 3.1, and Section 3.2 introduces the security game for SGM

schemes.

3
While not ideal, we felt this approach was necessary given the strong incentive to

make progress on MLS’s analysis prior to it being to widely deployed.
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3.1 Syntax
This section introduces the formal syntax of an SGM scheme. Parties

are identified by unique party IDs ID chosen from an arbitrary fixed

set. In the following, 𝑠 and 𝑠 ′ denote the internal state of the SGM
scheme before and after an operation, respectively. An SGM scheme

SGM consists of 15 algorithms grouped into the categories above:

• For initialization:

– 𝑠 ← Init(ID): takes as input a party ID ID and generates

the initial state.

• For interaction with the PKI:

– (𝑠 ′, spk)← Gen-SK(𝑠): generates new signature key pair

and outputs the public key;

– 𝑠 ′ ← Rem-SK(𝑠, spk): removes the key pair corresponding

to spk from the state;

– 𝑠 ′ ← Get-SK(𝑠, ID′, spk′): stores signature public key spk′

for party ID′;

– (𝑠 ′, kb)← Gen-KB(𝑠, spk): generates new key bundle (aka

initial key material), signed with spk;

– (𝑠 ′, ok) ← Get-KB(𝑠, ID′, kb′): stores key bundle kb′ for
party ID′ — can reject kb′ by outputting ok = false.

Key bundles have the format kb = (wpk, spk, sig), where

sig is a signature of wpk under spk, and wpk is so-called

welcome key material, which can be used to encrypt secret

information for joining group members.

• For group creation:

– 𝑠 ′ ← Create(𝑠, spk,wpk): creates group with self, where

the party uses key pair corresponding to spk to sign in

this group, while control messages for which the recipient

is the group creator, will be encrypted under keys in wpk.

• For proposals:

– (𝑠 ′, 𝑃 ) ← Add(𝑠, ID′): generates a proposal to add party

ID′;

– (𝑠 ′, 𝑃 )← Remove(𝑠, ID′): generates a proposal to remove

party ID′;

– (𝑠 ′, 𝑃 ) ← Update(𝑠, spk): generates a proposal for self to

update the personal key material; the new signing verifi-

cation key will be spk;

– (𝑠 ′, PI)← Proc-PM(𝑠, 𝑃 ): adds proposal 𝑃 to the state and

outputs information PI about 𝑃 .

• For commits:

– (𝑠 ′, 𝐸,W,𝑇 )← Commit(𝑠, P): creates a commit correspond-

ing to a vector P of proposals and outputs an epoch ID

𝐸, an array of welcome messages W (where W[ID] is the

welcomemessage for newly added party ID), and a commit

message 𝑇 (for existing group members);

– (𝑠 ′,GI)← Proc-CM(𝑠,𝑇 ): used by existing groupmembers

to process a commit message 𝑇 and reach a new epoch;

outputs updated group information GI (where GI = ⊥ if𝑇

is considered invalid);

– (𝑠 ′,GI) ← Proc-WM(𝑠,𝑊 ): used by newly added group

members to process welcome message𝑊 and join a group;

outputs group information GI (where GI = ⊥ if𝑊 is con-

sidered invalid).

• For sending and receiving messages:

– (𝑠 ′, 𝑒)← Send(𝑠, 𝑎,𝑚): generates a ciphertext 𝑒 encrypting

plaintext𝑚 and authenticating AD 𝑎;

– (𝑠 ′, 𝐸, S, 𝑖,𝑚)← Rcv(𝑠, 𝑎, 𝑒): decrypts ciphertext 𝑒 to plain-

text𝑚 and verifies AD 𝑎; also outputs a triple (𝐸, S, 𝑖) con-
sisting of epoch ID 𝐸, sender ID S, and message index

𝑖 .

3.2 Security
3.2.1 Bookkeeping. The complexity of the SGM security definition

stems from the bookkeeping required to determine which messages

are safe to challenge and when the attacker is allowed to inject. The

security game keeps track of all the relevant execution data with

the help of a so-called history graph. The recorded data informs

three safety predicates (each pertaining to privacy, authenticity,

or both) used to determine whether a given execution was legal.

These predicates are kept generic and considered parameters of the

security definition.

History graphs. A history graph is a directed tree whose nodes

correspond to the group state in the various epochs of an execution:

The root of the tree is a special node 𝑣root that corresponds to the

state of not being part of a group. The children of the root node

are 𝑣create-nodes, which correspond to the creation of groups.
4
The

remaining nodes all correspond to the group state after a partic-

ular commit operation. Two nodes 𝑣 and 𝑣 ′ are connected by an

edge (𝑣, 𝑣 ′) if the commit operation leading to 𝑣 ′ was created in 𝑣 .

Concretely, a history graph node consists of the following values:

𝑣 = (vid, orig, data, pid), where vid is the node’s (unique) ID, orig
is the party that caused the node’s creation, i.e., orig is either the
group creator or the committer, data is additional data, and pid is

the vector of (IDs of) proposals (see below) that were included in

the commit. The history graph is accessed by the security-game

oracles via the “HG object” HG, which provides information via

several methods (explained later as they are needed). The (ID vid
of the) node corresponding to a party ID’s current state is stored
by the array V-Pt[ID].

Proposals. Similarly to HG and the history graph, the object Props
keeps track of proposals. The information recorded about each pro-

posal is a vector 𝑝 = (pid, vid, op, orig, data), where pid is the pro-

posal’s (unique) ID, vid is the (ID of) the HG node corresponding to

the epoch in which the proposal was created, op ∈ {add, rem, upd}
is the type of proposal, orig is the party that issued the proposal, and
data is additional data. Similarly to the HG object, Props will also
export several useful methods (also explained later) to the oracles

of the security game.

4
The security game allows multiple groups to be created (when multiple parties simul-

taneously create a group). However, in order to remain in the single-group setting,

the attacker is required to pick a single one of these groups as the “canonical group.”

Parties may only join the canonical group.
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PKI bookkeeping. Just as epochs and proposals are kept track of

symbolically, so are welcome keys and signature keys. Specifically,

each welcome key has a (unique) welcome-key ID wkid, and each

signature key has a (unique) signature-key ID skid. The arrays

WK-ID[·] and SK-ID[·] map wkid and skid values to the ID of the

party that owns the corresponding secret keys; the arraysWK-PK[·]
and SK-PK[·] mapwkid and skid values to the corresponding public
keys. Moreover, the array WK-SK[·] remembers the binding of

welcome keys to signature keys; these bindings are created by key

bundles: when wpk with wkid is signed under spk with skid in a

key bundle, the game sets WK-SK[wkid]← skid.
The arrayCL-KB[·, ·] keeps track of the contact list for each party.

Specifically, CL-KB[ID, ID′] is a queue of pairs (wkid, skid) of (IDs

of) initial key material that ID would use if it were to add ID′ to
the group.

Stored and leaked values. In order to stay on top of the information

attacker A accumulates via state compromise, the security game

maintains the following arrays/sets. Stored values:V-St[ID] contains

pairs (vid, flag) of (i) (IDs of) the epochs for which ID currently

stores information and (ii) a flag recordingwhether said information

can be used to infer information about subsequent states. This array

is organized as a queue with maximum capacity 𝑟 , where 𝑟 is a

parameter of the definition and of SGM protocols: it stands for the

maximum number of “open” epochs a party keeps at any point in

time.
5 P-St[ID] contains the (IDs of) the proposals currently stored

by ID.WK-St[·] and SK-St[·] contain the (IDs of) the welcome and

signing keys, respectively, currently stored by ID. Leaked values:
V-Lk is a set that contains triples (vid, ID). Each such tuple means

that the attacker learned the state of ID in epoch vid, that for that
state flag = true, which implies that leaked information can be used

to infer information about subsequent epochs.WK-Lk and SK-Lk
contain the (IDs of) the welcome and signing keys, respectively,

for which the attacker has learned the secret keys. AM-Lk records

application messages for which the attacker has learned the key

material.

Deletions, and lack thereof. The SGM definition also requires that

parties who fail to delete old values can not use them to their

advantage after they are removed from the group. Correspondingly,

the arrayDel keeps track of which parties are deleting values as they
are supposed to (those withDel[ID] = true) and which ones are not.

Formally, a party withDel[ID] = falsewill simply move such values

to a special “trash tape,” instead of deleting them; the contents of the

trash tape will be revealed to A upon state leakage. Consequently,

there are several “trash arrays” that keep track of what is stored

on the trash tape of each party: V-Tr (for undeleted information

about epochs), AM-Tr (for undeleted information about application

messages),WK-Tr (for undeleted information about welcome keys),

and SK-Tr (for undeleted information about signature keys).

Challenges. The array Chall[vid] stores, for each vid, pairs (S, 𝑖),
indicating that the 𝑖th message from S in epoch vid was a challenge

message.

5
The intuition behind the flag is that only the information stored about newest epoch
should allow the attacker (upon state leakage) to compute key material for subsequent

epochs (which is unavoidable). Information corresponding to older epochs, which

are only kept open to receive delayed application messages, should not lend itself to

compromise the security of subsequent epochs.

Epoch IDs. The receiving algorithm Rcv must correctly output a

“sequence number” for each message received. A natural way to

identify application messages is by the triple of epoch ID, sender,

and index (as above). However, the SGM scheme cannot be expected

to output epoch identifiers vid used by the security game. Instead,

the scheme gets to label the epochs itself whenever a commit is cre-

ated by outputting an epoch ID 𝐸. Algorithm Rcvwill use the same 𝐸

to refer to messages sent in the corresponding epoch. The security

game stores the 𝐸 used by the SGM scheme in array Ep-ID[vid].

Bad randomness. The game keeps track of which update proposals

and commits were created with randomness known to the attacker

with the help of the Boolean array BR[·]. This information must be

recorded because such proposals/commits will not contribute to

PCS.

In the oracles below that correspond to randomized SGM algo-

rithms, the attacker gets to possibly supply the random coins 𝑟

used by the affected party. Whenever A does not wish to specify

said coins, it sets 𝑟 = ⊥, in which case uniformly random coins

(unknown to A) are used.

// General

𝑏 ← {0, 1}
idCtr++
∀ID : 𝑠[ID]← Init(ID)

// Communication

CM[·, ·]← 𝜖

WM[·, ·]← 𝜖

PM[·, ·]← 𝜖

AM[·, ·, ·, ·]← 𝜖

// History Graph

vidroot ← HG.init
V-Pt[·]← vidroot
V-St[·]← [(vidroot, false)]

V-Tr[·]← ∅
V-Lk← ∅
P-St[·]← ∅
Ep-ID[·]← 𝜖

// App. Messages

AM-Tr[·]← ∅
AM-Lk← ∅
// Miscellaneous

Chall[·]← ∅
Del[·]← true
BR[·]← false
// PKI

CL-KB[·, ·]← 𝜖

WK-SK[·]← 𝜖

WK-ID[·]← 𝜖

WK-PK[·]← 𝜖

WK-St[·]← ∅
WK-Tr← ∅
WK-Lk← ∅
SK-ID[·]← 𝜖

SK-PK[·]← 𝜖

SK-St[·]← ∅
SK-Tr← ∅
SK-Lk← ∅

Figure 1: Initialization of the security game for secure group-

messaging schemes.

3.2.2 Initialization. At the onset of the execution, the SGM secu-

rity game initializes (cf. Figure 1) all of the bookkeeping variables

listed above. Additionally, it randomly chooses the challenge bit

𝑏, initializes a counter idCtr that serves to provide IDs for epochs

(vid), for proposals (pid), for welcome keys (wkid), as well as for
signature keys (skid), and sets up communication arrays (explained

where they are used) dedicated to control and application messages.

The initialization also initializes the state of all possible parties

by running the Init algorithm and storing the result in the state

array 𝑠[·].6
Finally, the first node of the history graph is created via a call

to the HG.init method. This causes HG to create the root node

𝑣root = (.vid ← idCtr++, .orig ← ⊥, .data ← ⊥, .pid ← ⊥) and

return vidroot = 𝑣root .vid.

6
Of course, this is really done on an on-demand basis.
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3.2.3 Oracles. All adversary oracles described below proceed ac-

cording to the same pattern: (a) verifying the validity of the oracle

call, (b) retrieving values needed for (c), (c) running the correspond-

ing SGM algorithm, and (d) updating the bookkeeping. Validity

checks (a) are described informally in the text below; a formal de-

scription is provided in Section D of the Appendix. Note that, most

of the time, (b) and (c) are straight-forward and are not mentioned

in the descriptions. To improve readability, lines (c) are highlighted.

// ID generates new sig. key

gen-new-SigK(ID)

(𝑠[ID], spk)← Gen-SK(𝑠[ID])

skid← idCtr++
SK-ID[skid]← ID
SK-PK[skid]← spk
SK-St[ID] +← skid
return (skid, spk)

// ID removes sig. key

rem-SigK(ID, skid)

req SK-ID[skid] = ID
req skid ∈ SK-St[ID]

req skid /∈ HG.SKsUsed(ID)

spk← SK-PK[skid]

𝑠[ID]← Rem-SK(𝑠[ID], spk)

if ¬Del[ID]

SK-Tr[ID] +← skid
SK-St[ID] −← skid

// ID stores sig. key of ID′

get-SK(ID, ID′, skid)

req SK-ID[skid] = ID′

spk← SK-PK[skid]

𝑠[ID]← Get-SK(𝑠[ID], ID′, spk)

SK-St[ID] +← skid
// ID generates new key bundle

gen-new-KB(ID, skid)

req SK-ID[skid] = ID
req skid ∈ SK-St[ID]

spk← SK-PK[skid]

(𝑠[ID], kb)← Gen-KB(𝑠[ID], spk)

(wpk, ., .)← kb
wkid← idCtr++
WK-ID[wkid]← ID
WK-PK[wkid]← wpk
WK-St[ID] +← wkid
WK-SK[wkid] +← skid
return (wkid, kb)

Figure 2: PKI-related oracles of the security game for secure

group-messaging schemes. The compatibility functions are de-

scribed in the accompanying text; a formal description is pro-

vided in Section D.

3.2.4 PKI Oracles. The PKI oracles offer the following functionality
to attacker A:

• New signature keys: Have a party ID create a new signature

key pair. This essentially boils down to ID running algorithm

Gen-SK, which outputs a signature public key spk. The SGM
game then generates an skid for spk and updates arrays

SK-ID, SK-PK, and SK-St correspondingly.

• Remove signature keys: Have a party ID delete a signature

public key spk, identified by the corresponding skid. In order

for a call to this oracle to be legal, skidmust correspond to an

spk (a) currently stored by ID and (b) not used by ID in either

the current epoch or any pending proposals or epochs.
7
The

oracle simply runs Rem-SK on spk and subsequently updates
arrays SK-ID, SK-PK, and SK-St to reflect the removal of

spk. Additionally, if ID does not delete old values, i.e., if

Del[ID] = false, skid is added to SK-Tr[ID].

• Store new signature key: This oracle lets the attacker instruct
a party ID to store signature public key, identified by its skid,
of a party ID′. The oracle ensures that SK-ID[skid] = ID′,

7
Pending epochs are child epochs of V-Pt[ID]; they are explained in more detail later

on.

i.e., that skid was really created by ID′. This models the fact

that the bindings between signature keys and identities are

incorruptible.

• Generate new key bundle: The attacker can make a party ID
create a new key bundle and store it on the PKI server. To

that end,A specifies the skid of the signature public key spk
that is supposed to be used inside the key bundle. The call is

only valid if the key pair corresponding to skid is currently

stored by ID.
The oracle runs Gen-KB on spk. The first component of the

newly generated key bundle is a new welcome key wpk.
Thus, the security game generates a new wkid associated

with wpk and updates arrays WK-ID, WK-PK, and WK-St
accordingly. The oracle also binds wkid to skid.

• Store new key bundle: This oracle lets the attacker instruct a
party ID to store a key bundle kb = (wpk, spk, sig) belonging

to another party ID′. Two conditions must be satisfied for

the oracle call to be valid:

(1) The signature public key spk must belong to ID′, i.e.,
spk = SK-PK[skid] for some skid with SK-ID[skid] = ID′.
This models the fact that the long-term secrets binding

signature public keys to identities are incorruptible.

(2) The public key spk must be stored by ID.

If the oracle call is valid, algorithm Get-KB is run on ID′ and
kb. If the secret key corresponding to spk has not been leaked,
i.e., skid /∈ SK-Lk, thenGet-KBmust only accept the key bun-

dle if wpk exists and is bound to spk, i.e., WK-SK[wkid] =

skid. IfGet-KB outputs ok, skid /∈ SK-Lk, butWK-SK[wkid] ̸=
skid, then the adversary has attempted to create a forgery

against the signing key with ID skid, and if it is success-

ful, it wins the game. If wpk is adversarially generated (i.e.,

wkid = ⊥), the game generates a new wkid for wpk, updates
WK-PK accordingly, and immediately marks wkid as leaked.

Finally, ID’s (symbolic) contact list is updated, by adding the

pair (wkid, skid) to the end of queue CL-KB[ID, ID′].

3.2.5 Main oracles. The main oracles of the SGM game are split

into four figures: oracles related to (i) group creation and propos-

als (Figure 3), (ii) commits (Figure 4), (iii) sending, receiving and

corruptions (Figure 5). The validity of all oracle calls is checked

by the corresponding compatibility functions (cf. Section D in the

Appendix.).

Group creation. The attacker can instruct a party ID to create a

new group by calling the group-creation oracle (Figure 3); such a

call must also specify the skid of the signature key under which ID
initially signs their messages, as well as the wkid of the welcome

key material. A call to the group creation oracle is valid if (i) ID is

not in a group yet, (ii) skid, wkid, are currently stored by ID, and
(iii) wkid is signed under skid.

The bookkeeping is updated as follows: A call is made to the

HG.create(ID, skid) method. This causes HG to create a node 𝑣 =

(.vid ← idCtr++, .orig ← ID, .data ← skid, .pid ← ⊥) as a child

of 𝑣root and return vid = 𝑣 .vid. Then, the bad-randomness array

is filled (depending on whether A specified coins 𝑟 or not), ID’s
pointer is set to vid, and V-St[ID] is set to a queue containing
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only (vid, true), where the second component records that from

the information ID currently stores about vid, one can compute

information about (future) child states of vid.

// ID creates group; signs with skid
create-group(ID, skid,wkid, 𝑟 )

req *compat-create(ID, skid,wkid)

𝑠[ID]← Create(𝑠[ID], SK-PK[skid],WK-PK[wkid]; 𝑟 )

vid← HG.create(ID, skid)

BR[vid]← 𝑟 ̸= ⊥
V-Pt[ID]← vid
V-St[ID]← [(vid, true)]

return vid
// ID proposes to add ID′

prop-add-user(ID, ID′)
req *compat-prop(add, ID, ID′,⊥)

(𝑠[ID], 𝑃 )← Add(𝑠[ID], ID′)
(wkid′, skid′)← CL-KB[ID, ID′].deq
pid← Props.new(add, ID, (ID′,wkid′, skid′))
PM[pid]← 𝑃

return (pid, 𝑃 )

// ID proposes to remove ID′

prop-rem-user(ID, ID′)
req *compat-prop(rem, ID, ID′,⊥)

(𝑠[ID], 𝑃 )← Remove(𝑠[ID], ID′)
pid← Props.new(rem, ID, ID′)
PM[pid]← 𝑃

return (pid, 𝑃 )

// ID proposes update

prop-up-user(ID, skid, 𝑟 )

req *compat-prop(upd, ID,⊥, skid)

(𝑠[ID], 𝑃 )← Update(𝑠[ID], SK-PK[skid]; 𝑟 )

pid← Props.new(upd, ID, skid)

PM[pid]← 𝑃

return (pid, 𝑃 )

// Proposal pid delivered to ID
dlv-PM(ID, pid)

req *compat-dlv-PM(ID, pid)

(𝑠[ID], PI)← Proc-PM(𝑠[ID], PM[pid])

if ¬Props.checkPI(pid, PI)
win

P-St[ID] +← pid
// Proposal 𝑃 ′ injected to ID
inj-PM(ID, 𝑃 ′)

req *compat-inj-PM(ID, 𝑃 ′)
(𝑠[ID], PI)← Proc-PM(𝑠[ID], 𝑃 ′)
vid← V-Pt[ID]

IDO ← PI.orig
req ¬(*auth-compr(vid)

∧ *SK-compr(vid, IDO))

if PI ̸= ⊥
win

Figure 3: Group-creation and proposal-related oracles of the

security game for secure group-messaging schemes. The com-

patibility functions are described in the accompanying text; a

formal description is provided in Section D of the Appendix.

Creating proposals. The oracles prop-{add, rem,up}-user (Fig-
ure 3) allow the attacker to instruct a party ID to issue add/re-

move/update proposals. Calls to these proposal oracles are valid if

ID is a group member and:

• (add proposals) the target ID′ is not a group member already

and ID has initial key material for ID′ stored;

• (remove proposals) the target ID′ is a group member;

• (update proposals) the skidwith which ID is supposed to sign

is currently stored by ID.

Note that the last bullet means that if a party wishes to change its

active signature key, they must have generated one and registered

it with the PKI before issuing the corresponding proposal.

Bookkeeping is updated by callingProps.new(op, ID, data), which

records proposal data 𝑝 = (.pid← idCtr++, .vid← V-Pt[ID], .op←
op, .orig ← ID, .data ← data), where op ∈ {add, rem, upd} is
the proposal type and where data stores (add proposals) data =

(ID′,wkid′, skid′), where (wkid′, skid′) is the head of the contact

list CL-KB[ID, ID′]; (remove proposals) data = ID′; (update pro-
posals) data = skid. Furthermore, the proposal message 𝑃 output

by corresponding proposal algorithm (Add, Remove, or Update) is
stored in the communication array PM for proposal messages.

Delivering and injecting proposals. There are two oracles for getting
a proposal to a party ID (Figure 3): The first one, dlv-PM, is for

honest proposal delivery. The attacker specifies a pid—which must

belong to the epoch ID is currently in—and the corresponding

proposal is fed to the SGM algorithm Proc-PM. Proc-PM is required

to output proposal information PI, which is checked by function

Props.checkPI. Function checkPI ensures that PI correctly identifies
the type, the originator, as well as the data of the proposal.

8
The

last action performed by the oracle is to update P-St[ID] to include

pid, indicating that ID now stores the new proposal.

The second oracle, inj-PM, is used byA to inject proposals to a

party ID. More precisely, A is allowed to submit proposals 𝑃 ′ that
(a) either belong to an epoch different from vid := V-Pt[ID] or (b)

are completely made up (i.e., there exists no pidwith PM[pid] = 𝑃 ′).
A call to this second oracle is only allowed if the adversary is not

currently able to forge messages for epoch vid. This is the case if
either the key material used to authenticate in vid is compromised

(*auth-compr(vid)) or if the signing key used by the supposed

originator IDO of the proposal (as determined by the output of

Proc-PM) is compromised (*SK-compr(vid, IDO)). The functions

*auth-compr and *SK-compr are two of the safety predicatesmen-

tioned above.

Creating commits. The commit-related oracles (Figure 4) deal with

commits and delivery of commit and welcome messages.

In order to have a party ID create a commit based on a set of

proposals (with IDs) pid, the attacker calls the commit oracle. The
specified pid must be a subset of all proposals currently stored

by ID, and all proposals must belong to ID’s current epoch. In
addition, a (rather permissive) sensibility check is run on the vector

of proposal specified by pid: the proposals are processed in the

given order (changing the group roster accordingly), and for each

proposal it is checked whether the originator would be in the group

and, additionally, whether (add proposal) the target would be in the

group; (remove proposal) the target would not be in the group.

Subsequently, the SGM algorithm Commit is run on the given

set of proposals, which results in an epoch ID 𝐸, a vector of wel-

come messages W, and a commit message 𝑇 being output. Book-

keeping calls HG.commit(ID, pid), which creates a new HG node

8
Of course, checkPI checks that PI contains the actual welcome and signature keys

(and not wkid and skid).
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𝑣 = (.vid ← idCtr++, .orig ← ID, .data ← ⊥, .pid ← pid), as a

child of ID’s current epoch V-Pt[ID] and returns vid = 𝑣 .vid. Then,
the bad-randomness array is filled (depending on whether A spec-

ified coins 𝑟 or not), and 𝐸 is stored in array Ep-ID. Finally, the
commit messages (for current group members) are stored in array

CM, and the welcome messages (for new group members) in WM.

// ID commits proposals pid
commit(ID, pid, 𝑟 )

req *compat-commit(ID, pid)

(𝑠[ID], 𝐸,W,𝑇 )← Commit(𝑠[ID], PM[pid]; 𝑟 )

vid← HG.commit(ID, pid)

BR[vid]← 𝑟 ̸= ⊥
Ep-ID[vid]← 𝐸

for ID′ ∈ HG.roster(V-Pt[ID])

CM[ID′, vid]← 𝑇

for ID′ ∈ Props.addedIDs(pid)

WM[ID′, vid]←W[ID′]
return vid

// Control msg. delivered to ID
dlv-CM(ID, vid)

req *compat-dlv-CM(ID, vid)

𝑇 ← CM[ID, vid]

(𝑠[ID],GI)← Proc-CM(𝑠[ID],𝑇 )

if ¬HG.checkGI(vid,GI)
win

if HG.isRemoved(ID, vid)

V-Pt[ID]← vidroot
else

V-Pt[ID]← vid
𝑖[ID]← 0

P-St[ID]← ∅
if Del[ID]

V-St[ID].last.flag← false
else

V-Tr[ID] +← V-St[ID].first
V-St[ID].enq((V-Pt[ID], true))

// Control msg. 𝑇 ′ injected to ID
inj-CM(ID,𝑇 ′)

req *compat-inj-CM(ID,𝑇 ′)
(𝑠[ID],GI)← Proc-CM(𝑠[ID],𝑇 ′)
vid← V-Pt[ID]

IDO ← GI.orig
req ¬(*auth-compr(vid)

∧ *SK-compr(vid, IDO))

if GI ̸= ⊥
win

// Welcome msg. delivered to ID
dlv-WM(ID, vid)

req *compat-dlv-WM(ID, vid)

𝑊 ←WM[ID, vid]

(𝑠[ID],GI)← Proc-WM(𝑠[ID],𝑊 )

if ¬HG.checkGI(vid,GI)
win

V-Pt[ID]← vid
V-St[ID]← [vid]

wkid← HG.addedWK(ID, vid)

if ¬Del[ID]

WK-Tr[ID] +← wkid
WK-St[ID] −← wkid

// Welcome msg. 𝑊 ′ injected to ID
inj-WM(ID,𝑊 ′)

req *compat-inj-WM(ID,𝑊 ′)
(𝑠[ID],GI)← Proc-WM(𝑠[ID],𝑊 ′)
𝐸 ← GI.epID
req ∃ vid : Ep-ID[vid] = 𝐸

IDO ← GI.orig
req ¬(*auth-compr(vid)

∧ *SK-compr(vid, IDO))

if GI ̸= ⊥
win

Figure 4: Commit-related oracles of the security game for se-

cure group-messaging schemes. The compatibility functions are

described in the accompanying text; a formal description is pro-

vided in Section D of the Appendix.

Delivering and injecting commit messages. As with proposals, there

are two oracles that allow attacker A to get a commit message

(CM) to a current group member—for honestly generated CMs and

for adversarially generated CMs (Figure 4). The former oracle, dlv-
CM, can be used by A to deliver to a party ID any CM 𝑇 that

corresponds to a child epoch vid of ID’s current epoch V-Pt[ID],

provided all proposals that lead to vid have been delivered to ID.
Oracle dlv-CM runs SGM algorithm Proc-CM on 𝑇 , which results

in group information GI being output. This information is checked

by functionHG.checkGI. Function checkGI checks thatGI correctly
reports the new group roster, the originator, as well as the parties
added and removed. Next, if ID has been removed as part of the

commit (checked by function HG.isRemoved), its pointer V-Pt[ID]

is set to vidroot; otherwise, V-Pt[ID] is set to the new epoch vid.
Furthermore, the index counter 𝑖[ID] is reset to 0, and P-St[ID],

the set of proposals stored, is set to the empty set. If ID deletes

old values, i.e., if Del[ID] = true, the game changes the flag in

(·, flag) = V-St[ID].last to false since it is no longer the newest state.
If ID does not delete old values, this change is not made, and the

first element of V-St[ID] is put into V-Tr[ID] (because it is about

to be removed from the queue). Finally, the new epoch vid is added

to the end of queue V-St[ID]. Recall that this queue has a capacity

of 𝑟 , which means that the first element of the queue is removed.

This captures that information about the oldest epoch in ID’s state
is now deleted by ID.

The second oracle, inj-CM, is used by A to inject CMs to a

party ID. More precisely, A is allowed to submit any CM 𝑇 ′ that
(a) either belongs to an epoch different from any child epoch of

vid := V-Pt[ID] or (b) is completely made up. A call to this second

oracle is only allowed if the adversary is not currently able to forge

messages for epoch vid. Similarly to proposals, whether this is the

case is determined via the (generic) safety predicates *auth-compr
and *SK-compr.

Delivering and injecting welcome messages. The oracles dlv-WM
and inj-WM can be used by A to deliver and inject welcome mes-

sages, respectively. The work analogously to oracles dlv-CM and

inj-CM above.

Sending messages and challenges. Oracle send allowsA to instruct

any current group member S to send a message𝑚 and associated

data (AD) 𝑎. The oracle runs algorithm Send on𝑚 and 𝑎, which

creates a ciphertext 𝑒 . The oracle increments S’s message counter,

and stores the triple (𝑎,𝑚, 𝑒) in AM.

The challenge oracle chall works quite similarly, except that A
specifies two equal-length messages𝑚0 and𝑚1, and𝑚𝑏 is passed to

Send (where 𝑏 is the bit chosen during initialization). Furthermore,

the pair (S, 𝑖[S]) is recorded in array Chall.

Delivering and injecting application messages. The attacker can get

application messages to group members in two ways, by using ei-

ther dlv-AM or inj-AM—for honestly and adversarially generated

AMs, respectively. Oracle dlv-AM takes as input a tuple (vid, S, 𝑖, R)

identifying the epoch, the sender, the index, and the recipient of the

AM to be delivered. Then, the corresponding AD and ciphertext

are input to Rcv, which subsequently outputs (𝐸 ′, S′, 𝑖 ′,𝑚′). These
values are checked, and if R misidentifies any of them, the attacker

immediately wins the security game. Subsequently, AM[vid, S, 𝑖,R]

is set to received, indicating that R should no longer keep around

any key material that can be used to decipher 𝑒 . If R does not delete

old values, then a corresponding entry is place in array AM-Tr[R].

Note that the oracle does not return any values since the attacker

knows which values are output by Rcv.
Oracle inj-AM allowsA to inject any AD/ciphertext pair (𝑎′, 𝑒 ′)

to a group member R as long as they do not correspond to an hon-

estly generated AM. The game requires that if Rcv accepts 𝑒 ′ and
outputs (𝐸 ′, S′, 𝑖 ′,𝑚′), it must be the case that (1) the key material

for the 𝑖 ′th message sent by S′ in epoch 𝐸 ′ has not been compro-

mised, and (2) no message has been output for these identifiers

before (i.e., a successful replay attack is considered a break of au-

thenticity). Whether (1) is the case is determined by the (generic)

safety predicates *AM-sec and *SK-compr.

Corruption oracle. The corruption oracle corr allows the attacker to
leak the state of any party ID. It does bookkeeping for the following:
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// S sends message 𝑚 with AD 𝑎

send(S, 𝑎,𝑚)

req *compat-send(S)

(𝑠[S], 𝑒)← Send(𝑠[S], 𝑎,𝑚)

𝑖[S]++

for R ∈ HG.roster(V-Pt[S]) \ {S}
AM[V-Pt[S], S, 𝑖[S],R]←

(𝑎,𝑚, 𝑒)

return 𝑒

// Deliver 𝑖th msg of S in vid to R
dlv-AM(vid, S, 𝑖,R)

req *compat-dlv-AM(vid, S, 𝑖,R)

(𝑎,𝑚, 𝑒)← AM[S, vid, 𝑖,R]

(𝑠[R], 𝐸′, S′, 𝑖′,𝑚′)← Rcv(𝑠[R], 𝑎, 𝑒)

if (𝐸′, S′, 𝑖′,𝑚′) ̸=
(Ep-ID[vid], S, 𝑖,𝑚)

win
if ¬Del[R]

AM-Tr[R]← (vid, S, 𝑖)
AM[vid, S, 𝑖,R]← received

// Attacker leaks state of ID
corr(ID)

for (vid, flag) ∈ V-St[ID]∪ V-Tr[ID]

if flag
V-Lk +← (vid, ID)

AM-Rcvd←
{(S, 𝑖) | AM[vid, S, 𝑖, ID] =

received}
AM-Lk +←

(vid,AM-Rcvd,AM-Tr[ID])

𝑊 ←WK-St[ID] ∪WK-Tr[ID]

WK-Lk +← {wkid ∈𝑊 |
WK-ID[wkid] = ID}

𝑆 ← SK-St[ID] ∪ SK-Tr[ID]

SK-Lk +← {skid ∈ 𝑆 |
SK-ID[skid] = ID}

HG.corrHanging(ID)

return 𝑠[ID]

// Disable deletions for ID
no-del(ID)

disable deletions for ID
Del[ID]← false

// Safety for privacy

*priv-safe
return ∀vid, S, 𝑖 : ((S, 𝑖) ∈
Chall[vid] =⇒ *AM-sec(vid, S, 𝑖))

// S sends challenge with AD 𝑎

chall(S, 𝑎,𝑚0,𝑚1)

req *compat-chall(S)

(𝑠[S], 𝑒)← Send(𝑠[S], 𝑎,𝑚𝑏 )

𝑖[S]++

for R ∈ HG.roster(V-Pt[S]) \ {S}
AM[V-Pt[S], S, 𝑖[S],R]←

(𝑎,𝑚, 𝑒)

Chall[V-Pt[S]] +← (S, 𝑖[S])

return 𝑒

// 𝑎′, 𝑒′ get injected to R
inj-AM(𝑎′, 𝑒′,R)

req *compat-inj-AM(𝑎′, 𝑒′,R)

(𝑠[R], 𝐸′, S′, 𝑖′,𝑚′)← Rcv(𝑠[R], 𝑎′, 𝑒′)

if𝑚′ ̸= ⊥
let vid′ : Ep-ID[vid′] = 𝐸′

if ¬
(
¬*AM-sec(vid′, S′, 𝑖′)

∧ *SK-compr(vid′, S′)
)

∨ AM[vid′, S′, 𝑖′,R] =

received
win

if ¬Del[vid]

AM-Tr[R]← (vid′, S′, 𝑖′)
AM[vid′, S′, 𝑖′,R]←
received

return (𝐸′, S′, 𝑖′,𝑚′)

Figure 5: Send/receive, corruption, no-deletion, and privacy-

safety oracles of the security game for secure group-messaging

schemes. The compatibility functions are described in the accom-

panying text; a formal description is provided in Section D of the

Appendix.

• Epochs: All epochs ID currently stores information for are

kept track of byV-St[ID]; recall that for (vid, flag) ∈ V-St[ID]

the variable flag records whether or not the information

stored about vid allows to infer key material of child epochs.

The security game copies the pairs in V-St[ID] with flag =

true into the set V-Lk. Additionally, for all (vid, ·) ∈ V-St[ID],

records the current set of messages already received by ID in

epoch vid. This helps keep track of which application mes-

sages are affected by this instance of state leakage. Finally,

the values in V-Tr[ID] are also recorded.

• Welcome keys: By leaking ID’s state, A learns all welcome

secret keys currently stored by ID: either because ID is sup-

posed to be storing them (recorded byWK-St[ID]) or because

they are in ID’s trash (i.e., inWK-Tr[ID]). The corresponding

wkids are added to the set WK-Lk.

• Signature keys: Handled analogously to welcome keys.

• Application-message trash: The attacker also learns all values
in the array AM-Tr[ID].

• Pending proposals and commits. If at the time ID is corrupted,

there are outstanding (i.e., uncommitted) update proposals

(with ID) pid by ID or hanging (i.e, created but not processed

yet) commits (with ID) vid by ID, the attacker learns the

corresponding secrets. To that endHG.corrHanging(ID) sets

BR[pid]← true resp. BR[vid]← true for all of them. This

will reflect the fact that these update proposals / commits

cannot be used for PCS.

Disabling deletions. When the attacker calls oracle no-del for a
party ID, that party stops deleting old values and stores them on a

special trash tape instead (which is leaked along with the rest of

ID’s state to the attacker upon state compromise).

3.2.6 Privacy-related safety. At the end of the execution of the

SGM security game, the procedure *priv-safe ensures that the

attacker has only challenged messages that are considered secure

by the (generic) safety predicate *AM-sec. If the condition is not

satisfied, the attacker loses the game.

3.2.7 Advantage. Let Π = {*AM-sec, *auth-compr, *SK-compr}
be the set of generic safety predicates used in the SGM definition.

The attacker A is parameterized by it’s running time, 𝑡 , and the

number of challenge queries, 𝑞, and referred to as (𝑡, 𝑞)-attacker.

The advantage of A against an SGM scheme Γ w.r.t. to predicates

Π is denoted by Adv
Γ

SGM,Π
(A).

Definition 3.1. An SGM scheme Γ is (𝑡, 𝑞, 𝜀)-secure w.r.t. predicates
Π, if for all (𝑡, 𝑞)-attackers,

Adv
Γ

SGM,Π(A) ≤ 𝜀 .

4 MODULARIZING MLS AND PROVING ITS
SECURITY

This section provides a summary of the MLS protocol, our modu-

larization of it, as well as the security proofs for the full protocol—

based only on the security of the generic components—and for the

components themselves (based on specific common cryptographic

assumptions).

Our modularization splits MLS into the following three compo-

nent primitives: continuous group key-agrement (CGKA), forward-
secure group AEAD (FS-GAEAD), and PRF-PRNGs. FS-GAEAD corre-

sponds to a single epoch of secure group messaging, the PRF-PRNG

can be thought of as an entropy pool from which key material for

FS-GAEAD is extracted, and the entropy pool itself is continually

refreshed by values from CGKA.

4.1 Continuous Group Key Agreement
CGKA schemes have a structure that is very close to that of an SGM

protocol: they proceed in epochs using the propose-and-commit

paradigm and provide algorithms for group creation/joining, in-

teraction with the PKI, issuing proposals, and creating/processing

commits. However, instead of being used to send/receive messages,

in each epoch, CGKA scheme outputs a high-entropy update secret.
The full CGKA syntax can be found in Section A of the Appendix.

The part of MLS responsible for CGKA is called TreeKEM; an

improved version called RTreeKEM is also known and considered

in this work, despite not currently being part of the MLS standard.
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Security definition. CGKA schemes are expected to guarantee the

secrecy of the generated group keys. Furthermore, just like SGM

schemes, they must provide post-compromise forward secrecy (PCFS).
Once more, both update proposals and commits must contribute to

post-compromise security (PCS). CGKA schemes must also be able

to deal with bad randomness as well as parties who do not delete

old values.

An important difference between CGKA and SGM schemes is

that the former are designed in a fully authenticated setting. That

is, the attacker in the CGKA security game is not permitted to inject
control messages. This turns out to be sufficient as the “authenti-

cation layer” can be added by the higher-level protocol using the

CGKA scheme; it also greatly simplifies the security analysis.

Similarly to SGM, the CGKA security game allows adversary A
to control the execution of and attack a single group. In particular,

A controls who creates the group, who is added and removed, who

updates, who commits, etc. The attacker is also allowed to leak the

state of any party (whether currently part of the group or not) at

any time. The privacy of keys is captured by considering a challenge

that outputs either the actual key output by the CGKA scheme or a

truly random one—which one is determined by an internal random

bit 𝑏, which must be guessed by A at the end.

The CGKA security game follows the history-graph paradigm

to keep track of all the relevant execution data. The recorded data

informs a safety predicate *CGKA-priv used at the end of the game

to exclude trivial wins byA. More details can be found in Section A

of the Appendix.

Instantiation: (R)TreeKEM. The (R)TreeKEM CGKA protocols are

based on so-called (binary) ratchet trees (RTs). In an RT, group

members are arranged at the leaves, and all nodes have an associated

public-key encryption (PKE) key pair, except for the root. The tree

invariant is that each user knows all secret keys on their direct path,
i.e., on the path from their leaf node to the root. In order to perform

a commit operation and produce a new update secret 𝐼 , a party

first generates fresh key pairs on every node of their direct path.

Then, for every node 𝑣 ′ on its co-path—the sequence of siblings of
nodes on the direct path—it encrypts specific information under the

public key of 𝑣 ′ that allows each party in the subtree of 𝑣 ′ to learn

all new secret keys from 𝑣 ’s parent up to the root. In TreeKEM,

standard (CPA-secure) PKE is used. As shown in previous work [3],

this leads to subpar PCFS. RTreeKEM improves on this by using

so-called updatable PKE (UPKE), in which public and secret keys are

“rolled forward” every time a message is encrypted and decrypted,

respectively.

Security results. In order to establish adaptive security of the RTreeKEM
protocol, this work applies the so-called Generalized-Selective-

Decryption (GSD) paradigm to UPKE. Specifically, we prove GSD

security of IND-CPA-secure UPKE in the random oracle model, by

first defining a GSD game that models UPKE based executions, in

the presence of bad randomness and group splitting attacks, and

then appropriately adapting the framework of [1]. The security of

RTreeKEM itself is established by reduction to the GSD security of

the underlying UPKE scheme. The safety predicate *CGKA-priv
considers the commit secret of an epoch vid secure if (informally)

the following conditions are satisfied: (1) There is no “corrupted”

ancestor epoch in the history graph, where an epoch can be cor-

rupted if either a party gets added with leaked initial keys or if the

state of a party in the epoch is leaked; (2) no information about

vid is known to the attacker as the result of splitting the group (cf.

full version [4]); (3) good randomness was used by the commiter

creating vid. More details can be found in the full version [4].

TreeKEM is securew.r.t. a weaker security predicate than RTreeKEM.

Namely, it is required that either there is no post-challenge compro-

mise (the notion of PCS in [3]), or if there is, compromise happens

after the party has already updated it’s state (the FSU notion of [3]).

Then, security proof for TreeKEM is similar to that of RTreeKEM

and proceeds in two steps: first, we consider a reduction from GSD

for standard public-key encryption to the IND-CPA security of the

underlying scheme, and then we reduce the security of TreeKEM

to that of GSD.

4.2 Forward-Secure Group AEAD
FS-GAEAD schemes provide the convenient abstraction of an “epoch

of groupmessaging.” That is, they capture the sending and receiving

of application messages within a single epoch of a full SGM scheme.

In an execution of FS-GAEAD, all participating group members

are initialized with the same random group key (i.e., that key is

assumed to be generated and distributed among the group members

by the higher-level protocol).

An FS-GAEAD scheme protects the authenticity and privacy of

messages sent. Furthermore, it provides forward secrecy, i.e., the

security of messages received will not be affected by state compro-

mise. Note that FS-GAEAD is not required to provide any form

of post-compromise security, which allows to design completely

deterministic schemes (apart from the initial key).

Security definition. The security of FS-GAEAD is captured via a

corresponding game, in which 𝑛 parties share the same initial key.

The attacker can have parties send and receive messages arbitrarily,

ask for challenges, and leak the state of any party at any time. The

game keeps track of the entire execution, but crucially of which

messages have been received by which parties. When the state of

some party ID is leaked, the set of messages received by ID is stored:

these are the messages that must remain secure even given ID’s
leaked state. This information is used by a safety predicate *FS-
sec to avoid trivial wins by A, be it w.r.t. privacy or authenticity.

More details can be found in Section B of the Appendix and the full

version [4].

Instantiation and security results. We show how to build FS-GAEAD

from a forward-secure key-derivation function (FS-KDF). An FS-KDF

keeps state 𝑠—initially set to a uniformly random string—and, upon

request, derives keys corresponding to labels lab. After each such

request, the FS-KDF also updates its own state. For each initial state,

there a unique key corresponding to each label, irrespective of the

order in which the labels were queried. The FS-KDF is forward-

secret because even if its state is leaked, all keys output up to that

point remain secure. An FS-KDF itself can be obtained via a tree

construction based on a normal PRG.

Given an FS-KDF, the construction of FS-GAEAD is as follows:

messages and AD are encrypted/authenticatedwith a normal AEAD
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scheme, where the key for the 𝑖th message by party ID is derived

using the label (ID, 𝑖).
The safety predicate *FS-sec achieved by our construction con-

siders a message secure if no party’s state is leaked before it receives

the message. For more information see Section B of the Appendix

and the full version [4].

4.3 PRF-PRNGs
A PRF-PRNG resembles both a pseudo-random function (PRF) and

a pseudorandom number generator with input (PRNG)—hence the

name. On the one hand, as a PRNG would, a PRF-PRNG (1) repeat-

edly accepts inputs 𝐼 and context information 𝐶 and uses them to

refresh its state 𝜎 and (2) occasionally uses the state, provided it

has sufficient entropy, to derive a pseudo-random pair of output

𝑅 and new state; for the purposes of secure messaging, it suffices

to combine properties (1) and (2) into a single procedure. On the

other hand, a PRF-PRNG can be used as a PRF in the sense that if

the state has high entropy, the answers to various pairs (𝐼 ,𝐶) on
the same state are indistinguishable from random and independent

values.

Security definition. The intuitive security properties for PRF-PRNGs
mentioned above must also hold in the presence of state compro-

mise. In particular, a PRF-PRNG must satisfy PCFS (cf. Section 3.2)

and deal with splitting (cf. Section C of the Appendix and the full

version [4]). Therefore, the security game for PRF-PRNGs follows

the same history-graph approach as the definitions of SGM and

CKGA. However, since the game only consists of the state of the

PRF-PRNG and there are no parties, it suffices to keep track of

a much smaller amount information. Formal definitions for PRF-

PRNGs are provided in Section C of the Appendix.

Instantiation and security results. The MLS protocol uses HKDF [22]

as PRF-PRNG. This work models HKDF as a random oracle and

shows that it achieves achieves security w.r.t. safety predicate *PP-
secure, which captures that in order for a value 𝑅 to be considered

secure in a particular epoch 𝑒 , (1) 𝑒 must have an ancestor 𝑒 ′ (pos-
sibly itself) that was reached via a random input 𝐼 not known to

A, and (2) there must have been no corruptions on the path from

𝑒 ′ to 𝑒’s parent. More details can be found in the full version [4].

4.4 Plugging things together
The protocol is based on the following primitives: A CGKA scheme

K = (K-Gen-IK,K-Create,K-Add,K-Remove,K-Update,K-Commit,
K-Proc-Com,K-Join), an FS-GAEAD scheme F = (F-Init, F-Send,
F-Rcv), a CPA-secure public key encryption schemePKE = (E-KeyGen,
E-Enc, E-Dec), an existentially unforgeable signature scheme S =

(S-KeyGen, S-Sign, S-Ver), a message authentication scheme M =

(M-Tag,M-Ver), a PRF-PRNG PP, a collision resistant hash function

H. The initialization and PKI algorithms of our construction are

depicted on Figure 6. The helper functions are formally presented

in the full version. Below we describe the main SGM algorithms

depicted on Figure 7, in which we use different colors to high-

light the use of the underlying primitives: CGKA, FS-GAEAD, PKE,

Signatures, MAC, PRF-PRNG, Hash.

Group creation. The group creation operation, Create, receives
(possibly bad) randomness 𝑟 , a signature verification key, spk, which

is the key that will be used by the groupmembers to verify messages

sent by the group creator, as well as the welcome key material wpk.
It adds the group creator’s id to the roster (s.G← [ME]), executes

the CGKA group creation operation, absorbs the output 𝐼 into the

PRF-PRNG PP. PP outputs the new PRF-RPNG state s.𝜎 , the FS-
GAEAD key 𝑘𝑒 , a MAC key s.km (used to authenticate control

messages), and the current epoch id, s.C-epid. Next, the FS-GEAD
init operation F-Init, is executed with inputs 𝑘𝑒 , the group size,

which is 1, and the id ME of the group creator.

Proposals. To add a party ID𝑎 , Add recovers the key bundle kb′

for that ID from the contact list, and runs the CGKA add-proposal

algorithm with keys from kb′, getting a CGKA proposal P̄, which it

then uses to construct and authenticate (with MAC and signature)

the SGM proposal message P
′
. Remove and Update are similar

(where Update takes the new signing key of the updater as input).

When processing any proposal, algorithm Proc-PM simply attempts

to authenticate the proposal and stores it locally. Proc-PM returns

proposal information: the operation op, the origin of the proposal,

orig, and the data data, as computed by *get-propInfo(P
′
) (cf.

Section E of the Appendix).

Committing. To commit to a set P of proposals, Commit calls
the CGKA commit operation to obtain CGKA welcome messages

𝑊pub and WPrv as well as CGKA control message T̄ and update

secret 𝐼 . T̄ is used to construct and authenticate (with MAC and

signature) the SGM control message T
′
(which includes a hash

of the proposals). Then, Commit creates and authenticates (with

MAC and signature) the SGM welcome messages for joining parties

by adding an encryption of the PRF-PRNG state s.𝜎 to the CGKA

welcome messages. The MAC key used for authenticating control

and welcomemessages is derived by absorbing 𝐼 into the PRF-PRNG

(with context information that depends on T
′
). Note that s.𝜎 is not

updated yet, however.

Process commit/welcome messages. Algorithm Proc-CM first verifies

the authentication information (MAC and signatures) of a commit

message T
′

= ("com", epid, ID,h, T̄). However, in order to obtain the

MAC key, (1) the CGKA control message T̄ has to be processed by

Proc-Com, which (2) recovers the update secret 𝐼 , which in turn (3)

must be absorbed into the PRF-PRNG (this time updating its state).

The last step also produces the shared key for the new FS-GAEAD

session.

Algorithm Proc-WM, used by joining parties to processes wel-

come messages W
′
proceeds similarly, except that the state of the

PRF-PRNG must first be obtained by decrypting the corresponding

ciphertext in W
′
.

Send message. To send associated data 𝑎 and plaintext 𝑚, Send
passes 𝑎 and𝑚 to the current epoch’s FS-GAEAD send operation,

and, additionally, also signs the resulting ciphertext, 𝑎, and the iden-

tifier s.C-epid of the current epoch. Receiving works analogously,

with the caveat that the appropriate FS-GAEAD session must be

used.

4.4.1 Security. Main idea: The authenticity property of our con-

struction relies on the EU-CMA security of signatures, the unforge-

ability of MACs, and the authenticity of the FS-GAEAD scheme. In

particular, if the sender’s signing key is secure, then an injection
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w.r.t. that key fails with overwhelming probability. If this is not

the case, an honest commit operation provides post-compromise

authenticity, by producing a secure CGKA update secret, 𝐼 , which

feeds the PRF-PRNG with good randomness, which in turn outputs

secure MAC and FS-GAEAD keys, used for the authentication of

future control (via MAC security) and application (via FS-GAEAD

security) messages (this requires the adversary to remain passive

for one epoch). PCFS with respect to privacy is similar and relies

on the PCFS security CGKA and the FS of FS-GAEAD.

Simplified properties. Proving SGM security is facilitated by consid-

ering three simplified properties, namely correctness, authenticity,
and privacy. In the full version of the paper [4] we prove that these

properties together imply full SGM security. Besides modularity,

simplified properties facilitate the transition from selective to fully
adaptive security, as the individual “simplified” games, defined in

the full version [4], consider selective adversaries that commit to the

challenge (e.g., the challenge or the last healing, epoch, the message

sender and index used for the challenge) at the beginning of the

game. In the reduction from the simplified properties to full SGM

security, the adversarial strategy is being guessed and the success

probability is bounded by values that relate to the running time of

the adversary. After proving the simplified properties theorem, one

can prove authenticity and privacy, individually, against selective
adversaries that commit to their strategy before the security game

begins.

Safety predicates. Using safety predicates, we provide a generic

theorem (cf. Theorem 4.1), that considers any CGKA, FS-GAEAD,

and PRF-PRNG scheme. Those schemes come along with their se-

curity predicates, ΠCGKA, ΠFS and ΠPP, respectively, and we prove

that as long as the attacker’s actions are not violating those predi-

cates, then the resulting SGM construction is secure w.r.t. the SGM

predicate ΠSGM = ΠSGM(ΠCGKA,ΠFS,ΠPP). Our SGM safety predi-

cate ΠSGM (explained below) is depicted in Figure 8 and operates

over history graph information, generated by the SGM security

game. Here, we consider ΠCGKA = *CGKA-priv, ΠFS = *FS-sec,
ΠPP = *PP-secure (cf. Figure 8).

Proof idea. The adversary breaks authenticity if it manages to make

a non-trivial injection, which implies that either of the following

holds: (1) injects a (proposal, welcome, commit or key bundle) mes-

sage in epoch vid that is signed with a non-compromised signing

key of the party ID (determined by *SK-compr(vid, ID)), (2) injects

a (proposal, welcome, commit) message when *auth-compr(vid)

holds, which implies that *PP-secure(vid, *Proj-PP(SGM-Data)),

i.e., PP is secure, and (3) injects an application message when the FS-

GAEAD state is not trivially compromised (determined by *FS-sec).
Clearly, security against (1) reduces to the EU-CMA security of

S. For (2) the output of the PRF-PRNG, PP, in epoch vid is secure,

therefore that MAC key (output by PP) is secure and we can rely

on the security of PP and the unforgeability of M. This requires

the following hybrids: (A) In the first hybrid, if the attacker finds a

collision against H, the execution aborts (reduces to the collision

resistance property of H). This hybrid is required for the protection
of the PP state in the presence of group splitting attacks in which

the adversary can split the group, corrupt in one branch to recover

the PP state, and challenge on another branch in which the PP state

is related to the corrupted one. Here, collision resistance ensures

that different control messages have different hash values, therefore

lead to independent PP states. (B) In the next hybrid, in the last

healing epoch before the challenge, substitute the CGKA update

secret (which feeds PP) with a uniformly random value (required

for the reduction to the PRF-PRNG security). Note that, by the defi-

nitions of *PP-secure, *Proj-PP, a good healing epoch before the

challenge epoch, exists, and this epoch satisfies *CGKA-priv. (C)
In the next hybrid we use the CPA security of PKE. In particular, in

the commit operation that creates the target epoch, encrypt the zero

message instead of encrypting the PP state, as part of the welcome

message (requires a reduction to the CPA security of PKE). (D) Next,
substitute the output of the PRF-PRNG PP in a commit message

for the target epoch, with a uniformly random value (reduces to

PRF-PRNG security). Finally, since the output of PP is substituted

by a uniformly random value, so does that MAC key, thus we have

a reduction to the unfogeability of the MAC scheme M for case (2).

Case (3) is similar, however in the last step we have a reduction to

the FS-GAEAD authenticity property of F. For privacy we consider

the same sequence of hybrids, however the final reduction is against

the FS-GAEAD privacy property of F. For that reduction we use

the fact that *FS-sec is satisfied.
We ultimately prove the following theorem:

Theorem 4.1. Let SGM = SGM(K, F, PKE, S,M, PP,H) be the
SGM scheme presented above and letΠSGM = ΠSGM(ΠCGKA,ΠFS,ΠPP)

be predicates such that: (1) K is a CGKA scheme with respect to predi-
cate ΠCGKA, (2) F is an FS-GAEAD scheme with respect to predicate
ΠFS, (3) PKE is a CPA secure public-key encryption scheme, (4) S is
an existentially unforgeable signature scheme, (5) M is a message
authentication code, (6) PP is a PRF-PRNG with respect to predicate
ΠPP, (7) H is a collision resistant hash. Then, SGM is an SGM scheme
with respect to predicate ΠSGM.
// Initialization

Init(ID)

// – Global State –

// Set Caller’s ID

ME← ID
// Stored Sig. Keys

SK-sk[.]← 𝜀

// Stored Wel. Keys

WK-wk[.]← 𝜀

// Contact List

CL-KB[.]← 𝜀

// – Group Specific State –

// Buffered Props

s.Props[.]← 𝜀

// Roster

s.G← [.]

// CGKA State

s.𝛾 ← 𝜀

// PRF-PRG State

s.𝜎 ← 𝜀

// FS-GAEAD States

s.𝑣[.]← 𝜀

// Current Epoch ID

s.C-epid← 𝜀

// My Sig. Key

s.C-ssk← 𝜀

// Verif. Keys

s.Ep-SPK[., .]← 𝜀

// MAC Key

s.km ← 𝜀

// Generate Signature Keys

Gen-SK
(spk, ssk)← S-KeyGen
SK-sk[spk]← ssk
return spk

// Delete Signing Key

Rem-SK(spk)

SK-sk[spk]← 𝜀

// Store Signing Key for Contact

Get-SK(ID, spk)

CL-S[ID] +← spk
// Generate Key Bundle

Gen-KB(spk)

(ipk, isk)← K-Gen-IK
(epk, esk)← E-KeyGen
(wpk,wsk)← ((epk, ipk), (esk, isk))

WK-wk[wpk]← wsk
ssk← SK-sk[spk]

sig← S-Sign(ssk,wpk)

return (wpk, spk, sig)

// Store Key Bundle of a Contact

Get-KB(ID′, kb)

(wpk, spk, sig)← kb
req spk ∈ CL-S[ID′]
req S-Ver(spk,wpk, sig)

CL-KB[ID′].enq((wpk, spk))

Figure 6: The SGM Construction : Initialization and PKI Algo-

rithms.
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// Create a group

Create(spk,wpk;𝑟 )

s.G← [ME]

wsk←WK-wk[wpk]

(·, isk)← wsk
(s.𝛾, 𝐼 )← K-Create(ME, isk;𝑟 )

(s.𝜎,𝑘𝑒 , s.km, s.C-epid)← PP(0, 𝐼 , 0)

s.Ep-SPK[s.C-epid,ME]← spk
s.𝑣[s.C-epid]← F-Init(𝑘𝑒 , 1,ME)

// Add proposal

Add(ID𝑎 )

kb′ ← CL-KB[ID𝑎 ]

((epk, ipk), spk)← kb′
(s.𝛾, P̄)← K-Add(s.𝛾, ID𝑎, ipk)

P
′ ← ("add", s.C-epid,ME, (ID𝑎, kb′), P̄)

𝑡 ← M-Tag(s.km, P′)
sig← S-Sign(s.C-ssk, (P′, 𝑡 ))

return (P
′, 𝑡, sig)

// Remove proposal

Remove(ID𝑟 )

(s.𝛾, P̄)← K-Remove(s.𝛾, ID𝑟 )

P
′ ← ("rem", s.C-epid,ME, ID𝑟 , P̄)

𝑡 ← M-Tag(s.km, P′)
sig← S-Sign(s.C-ssk, (P′, 𝑡 ))

return (P
′, 𝑡, sig)

// Update proposal

Update(spk;𝑟 )

req SK-sk[spk] ̸= 𝜀

(s.𝛾, P̄)← K-Update(s.𝛾 ;𝑟 )

P
′ ← ("upd", s.C-epid,ME, spk, P̄)

𝑡 ← M-Tag(s.km, P′)
sig← S-Sign(s.C-ssk, (P′, 𝑡 ))

return (P
′, 𝑡, sig)

// Receive A Message

Rcv(𝑎, 𝑒)

(𝑒′, sig)← 𝑒

(epid, 𝑎, 𝑒)← 𝑒′
(s.𝑣[epid], ID𝑠 , 𝑖,𝑚)← F-Rcv(s.𝑣[epid], (epid, 𝑎), 𝑒)

req ID𝑠 ̸= ⊥
spk← s.Ep-SPK[epid, ID𝑠 ]

req S-Ver(spk, 𝑒′, sig)

return (epid, ID𝑠 , 𝑖,𝑚)

// Commit

Commit(P;𝑟 )

req P ⊆ s.Props
// Get CGKA Proposals

P̄← P.P̄
// – Prepare Commit Message –
(s.𝛾,𝑊pub,WPrv, T̄, 𝐼 )← K-Commit(s.𝛾, P̄;𝑟 )

T
′ ← ("com", s.C-epid,ME, H(P), T̄)

v← H(T
′
)

// New MAC Key & Epoch ID

(., ., 𝑘𝑚, epid)← PP(s.𝜎, 𝐼 , v)

𝑡 ← M-Tag(𝑘𝑚, T′)
sig← S-Sign(s.C-ssk, (T′, 𝑡 ))

// Commit Message

T← (T
′, 𝑡, sig)

// – Prepare Welcome Messages –
(ID,wpk)← *added(P)

spk←
*new-spks(s.Ep-SPK[s.C-epid, ·], P)

for 𝑖 ∈ ID
𝑒 ← E-Enc(wpk[𝑖].epk, s.𝜎 )

W
′ ←
("wel",ME, ID[𝑖], v,𝑊pub, . . .

. . . ,WPrv[𝑖], 𝑒,wpk[𝑖], spk)

𝑡 ← M-Tag(𝑘𝑚, (W′, epid))

sig← S-Sign(spk[ME], (W′, 𝑡 ))

// Welcome Message

W[𝑖]← (W
′, 𝑡, sig)

return (epid,W, T)

// Process a proposal

Proc-PM(P)

(P
′, 𝑡, sig)← P

(., epid, ID, ., .)← P
′

req epid = s.C-epid
spk← s.Ep-SPK[epid, ID]

reqM-Ver(s.km, P′, 𝑡 )

req S-Ver(spk, (P′, 𝑡 ), sig)

s.Props +← P
′

return *get-propInfo(P
′
)

// Send A Message

Send(𝑎,𝑚)

𝐸 ← s.C-epid
(s.𝑣[𝐸], 𝑒)← F-Send(s.𝑣[𝐸], (𝐸,𝑎),𝑚)

𝑒′ ← (𝐸,𝑎, 𝑒)

sig← S-Sign(s.C-ssk, 𝑒′)
return (𝑒′, sig)

// Process Commit Message

Proc-CM(T)

(T
′, 𝑡, sig)← T

(., epid, ID, h, T̄)← T
′

// Matching Epochs?

req epid = s.C-epid
spk← s.Ep-SPK[epid, ID]

req S-Ver(spk, (T′, 𝑡 ), sig)

P← s.Props[h]

// Call CGKA

(s.𝛾,GI, 𝐼 )← K-Proc-Com(s.𝛾, T̄)

(s.𝜎,𝑘𝑒 , s.km, s.C-epid)← PP(s.𝜎, 𝐼 ,H(T
′
))

reqM-Ver(s.km, T′, 𝑡 )

s.G← GI.G
𝑝𝑜𝑠 ← *roster-pos(ME, s.G)

// Start FS-GAEAD

s.𝑣[s.C-epid]← F-Init(𝑘𝑒 , |s.G| , 𝑝𝑜𝑠)

s.Ep-SPK[s.C-epid, .]←
*new-spks(s.Ep-SPK[epid, ·], P)

spk← s.Ep-SPK[s.C-epid,ME]

s.C-ssk← SK-sk[spk]

return GI
// Join a Group

Proc-WM(W)

(W
′, 𝑡, sig)← W

(., ID𝑠 , ., v,𝑊pub,𝑊priv, 𝑒,wpk, spk)←
W
′

spk← spk[ID𝑠 ]

req
spk ∈ CL-S[ID𝑠 ] ∧ S-Ver(spk,W′, sig)

(esk, isk)←WK-wk[wpk]

s.𝜎 ← E-Dec(esk, 𝑒)

(s.𝛾,GI, 𝐼 )← K-Join(ME, ID𝑠 ,𝑊pub,𝑊priv, isk)

(s.𝜎,𝑘𝑒 , s.km, s.C-epid)← PP(s.𝜎, 𝐼 , v)

reqM-Ver(s.km, (W′, s.C-epid), 𝑡 )

s.G← GI.G
𝑝𝑜𝑠 ← *roster-pos(ME, s.G)

s.𝑣[s.C-epid]← F-Init(𝑘𝑒 , |s.G| , 𝑝𝑜𝑠)

s.Ep-SPK[s.C-epid, .]← spk
spk← s.Ep-SPK[s.C-epid,ME]

s.C-ssk← SK-sk[spk]

s.Props← 𝜀

Figure 7: The SGM Construction: main algorithms.

// Determines if authenticity of epoch vid compromised

*auth-compr(vid)

return ¬*PP-secure(vid, *Proj-PP(SGM-Data))

// Determines if ID’s signature key is compromised in epoch vid
*SK-compr(vid, ID)

chk HG.getSKIDs(vid, ID) ∩ SK-Lk = ∅
// Privacy Predicate

*AM-sec (vid, S, 𝑖)
if *PP-secure(vid, *Proj-PP(SGM-Data))

return *FS-sec((S, 𝑖), *Proj-FS(SGM-Data, vid))

return false
// Project History Graph to PRF-PRNG Game

*Proj-PP (SGM-Data = (V, P,V-Lk,AM-Lk,BR,WK-Lk))

for (vid, orig, data, pid) ∈ V
V′ +← vid

for vid ∈ V′
BI[vid]← ¬*CGKA-priv(vid′, *Proj-CGKA(SGM-Data))

return (V′,V-Lk,BI)
// Project History Graph to CGKA Game

*Proj-CGKA (SGM-Data = (V, P,V-Lk,AM-Lk,BR,WK-Lk))

for (vid, orig, data, pid) ∈ V
V′ +← (vid, orig, pid)

for 𝑝 = (pid, vid, orig, op, data) ∈ V
if op = add

let data = (ID′,wkid′, skid′)
data′ ← (ID′,wkid′)
𝑝′ ← (pid, vid, op, orig, data′)

if op = rem
𝑝′ ← 𝑝

if op = upd
𝑝′ ← ⊥

P′ +← 𝑝′

return (V′, P′,V-Lk,BR,WK-Lk)

// Project History Graph to FS-GAEAD Game

*Proj-FS (SGM-Data = (V, P,V-Lk,AM-Lk,BR,WK-Lk), vid)

for (vid, ID,AM-Rcvd[ID],AM-Tr[ID]) ∈ AM-Lk
AM-Lk′ +← (ID,AM-Rcvd[ID],AM-Tr[ID])

return AM-Lk′

Figure 8: Safety oracles and safety predicate of the security

game for SGM schemes.
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A CONTINUOUS GROUP KEY AGREEMENT
A.1 Syntax
This section introduces the formal syntax of a CGKA scheme. Par-

ties are identified by unique party IDs ID chosen from an arbitrary

fixed set. In the following, 𝛾 and 𝛾 ′ denote the internal state of the
CGKA scheme before and after an operation, respectively. A CGKA

scheme CGKA consists of eight algorithms:

• For PKI:

– (ipk, isk)← Gen-IK: generates and outputs a new initial

key pair.

• For group creation:

– 𝛾 ′ ← Create(ID, isk): initializes the state and creates group

with self, using as init secret key isk.

• For proposals:

– (𝛾 ′, 𝑃 ) ← Add(𝛾, ID′, ipk′): generates a proposal to add

party ID′ using initial public key ipk′;

– (𝛾 ′, 𝑃 )← Remove(𝛾, ID′): generates a proposal to remove

party ID′;

– (𝛾 ′, 𝑃 ) ← Update(𝛾 ): generates a proposal for self to up-

date.

• For commits:

– (𝛾 ′, 𝐼 ,𝑊pub,Wpriv,𝑇 ) ← Commit(𝛾, P): creates a commit

corresponding to a vector P of proposals and outputs the

resulting commit secret 𝐼 , a public welcome message𝑊pub
as well as a vector Wpriv of private welcome messages

(for newly added parties), and a control message 𝑇 (for

existing group members);

– (𝛾 ′,GI, 𝐼 ) ← Proc-Com(𝛾,𝑇 , P): used by existing group

members to process control message 𝑇 w.r.t. vector of

proposals P, and reach new epoch; outputs updated group

information GI (where GI = ⊥ if 𝑇 is considered invalid)

and a commit secret 𝐼 ;

– (𝛾,GI, 𝐼 ) ← Join(𝛾, orig,𝑊pub,𝑊priv, isk): used by newly

added group members to process welcome message𝑊pub
and𝑊priv, generated via a commit operation by orig, and
join a group using initial secret key isk; outputs group
information GI (where GI = ⊥ if𝑊pub or𝑊priv are consid-

ered invalid) and a commit secret 𝐼 .

A.2 Security
CGKA schemes must satisfy correctness, i.e., all group members

output the same keys in every epoch. Furthermore, the keys must

be private, and the CGKA scheme must satisfy post-compromise

forward secrecy (PCFS).

Similarly to the SGM game, the CGKA game allows adversaryA
to control the execution of and attack a single group. In particular,

A controls who creates the group, who is added and removed, who

updates, who commits, etc. The attacker is also allowed to leak the

state of any party (whether currently part of the group or not) at

any time. The privacy of keys is captured by considering a challenge

that outputs either the actual key output by the CGKA scheme or a

truly random one—which one is determined by an internal random

bit 𝑏, which must be guessed by A at the end of the game.

A.2.1 Bookkeeping. Similarly to SGM schemes, the CGKA security

game keeps track of all the relevant execution data with the help

of a so-called history graph, and the recorded data informs a safety
predicate (pertaining to privacy) evaluated at the end of the game.

The following paragraphs outline the differences in bookkeeping

between the CGKA game and the SGM game.

History graphs. A history graph is again a directed tree whose

nodes correspond to the group state in the various epochs of an

execution. As with the SGM game, there are three types of nodes:

𝑣root, 𝑣create nodes, and commit nodes 𝑣 . A node consists of the

following values:

𝑣 = (vid, orig, pid) ,

where

• vid is the node’s (unique) ID,

• orig is the party that caused the node’s creation, i.e., orig is
either the group creator or the committer,

• pid is the vector of (IDs of) proposals (see below) that were

included in the commit.

The history graph is accessed by the security-game oracles via the

“HG object” HG, which provides information via several methods

(explained later as they are needed). The (ID of the) node corre-

sponding to a party’s current state is stored by the array V-Pt[ID].

Proposals. Similarly to HG and the history graph, the object Props
keeps track of proposals. The information recorded about each

proposal is a vector

𝑝 = (pid, vid, op, orig, data) ,

where

• pid is the proposal’s (unique) ID,

• vid is the (ID of) the HG node corresponding to the epoch

in which the proposal was created,

• op ∈ {add, rem, upd} is the type of proposal,
• orig is the party that issued the proposal, and

• data is additional data.

Similarly to the HG object, Props will also export several useful

methods (also explained later) to the oracles of the security game.

PKI bookkeeping. The PKI is significantly simpler in the CGKA

game: it only handles so-called init keys (IKs), each of which has an

ID ikid. Arrays are maintained to map ikids to the corresponding

public init key (IK-PK) and secret init key (IK-SK). Moreover, IK-St
records the IKs stored by each party, and IK-Tr and IK-Lk keep track
of “trash” IKs (old secret init keys not deleted) and leaked IKs.

Keys and Challenges. The array Key[vid] stores, for each vid the cor-
responding key, and (the Boolean arrays)Reveal[vid] andChall[vid]

store whether the key was revealed and challenged, respectively.

A.2.2 Initialization. The initialization of the CGKA game proceeds

along very similar lines to that of the SGM game. It is depicted in

Figure 9.
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// General

𝑏 ← {0, 1}
idCtr++

∀ID : 𝛾[ID]← Init(ID)

// Communication

CM[·, ·]← 𝜖

PM[·, ·]← 𝜖

WMpub[·, ·]← 𝜖

WMpriv[·, ·]← 𝜖

WM-Lk← ∅
// History Graph

vidroot ← HG.init
V-Pt[·]← vidroot
V-Tr[·]← ∅

V-Lk← ∅
P-St[·]← ∅
// Miscellaneous

Key[·]← ∅
Reveal[·]← ∅
Chall[·]← ∅
Del[·]← true
BR[·]← false
// PKI

IK-PK[·]← 𝜖

IK-SK[·]← 𝜖

IK-St[·]← ∅
IK-Tr← ∅
IK-Lk← ∅

Figure 9: Initialization of the security game for CGKA schemes.

A.2.3 Oracles. All adversary oracles described below proceed ac-

cording to the same pattern: (a) verifying the validity of the oracle

call, (b) retrieving values needed for (c), (c) running the correspond-

ing SGM algorithm, and (d) updating the bookkeeping. Validity

checks (a) are described informally in the text below; a formal de-

scription is provided in Figure 14. Note that, most of the time, (b) and

(c) are straight-forward and are not mentioned in the descriptions.

To improve readability, lines (c) are highlighted.

A.2.4 PKI.. The spirit of the PKI (Figure 10) in the CGKA game

differs somewhat from the SGM case. Init keys (IKs) are either

honestly generated by a party, via oracle gen-new-ik, or registered
by the attackerA, via oracle reg-ik. Note that the CGKA game will

allow the attacker to pick which IK a new group member is added

with; hence, there is no association between IKs and identities.

Oracle gen-new-ik(ID) runs the IK-generation algorithmGen-IK
and stores the resulting key pair with a new ikid. The oracle also
records in IK-St that ID now stores the IK with ID ikid. Oracle
reg-ik(ipk) allowsA to register an IK public key ipkwith the game

(and get an ikid for it).

A.2.5 Main oracles. The main oracles of the CGKA game are split

into two figures: oracles related to (i) group creation, proposals, and

commits (Figure 11), and (ii) message processing, corruption, and

challenges (Figure 13). The validity of all oracle calls is checked by

the corresponding compatibility functions (Figure 14).

Group creation. The attacker can instruct a party ID to create a

new group by calling the group-creation oracle (Figure 3), which

works analogously to the corresponding oracle in the SGM game.

The bookkeeping is updated as follows: A call is made to the

HG.create(ID, skid) method. This causes HG to create a node

𝑣 =

©«
.vid ← idCtr++

.orig ← ID
.pid ← ⊥

ª®¬

// Instruct ID to generate a new initial key

gen-new-ik(ID)

(𝛾[ID], (ipk, isk))← Gen-IK(𝛾[ID])

ikid← idCtr++

IK-PK[ikid]← ipk
IK-SK[ikid]← isk
IK-St[ID] +← ikid

return (ikid, ipk)

// Allows attacker to register IKs with game

reg-ik(ipk)

req ̸∃ ikid : IK-PK[ikid] = ipk

ikid← idCtr++

IK-Lk +← ikid
IK-PK[ikid]← ipk

return ikid
Figure 10: PKI-related oracles of the security game for contin-

uous group key agreement schemes.

as a child of 𝑣root and return vid = 𝑣 .vid. Note that the CGKA group-

creation oracle also stores the key 𝐼 output by Create in the array

Key.

Proposal oracles. The oracles prop-{add, rem,up}-user (Figure 11)
allow the attacker to instruct a party ID to issue add/remove/update

proposals. These oracles work much like their counterparts in the

SGMgame. Bookkeeping is updated by calling Props.new(op, ID, data),

which records proposal data

𝑝 =

©«
.pid ← idCtr++

.vid ← V-Pt[ID]

.op ← op
.orig ← ID
.data ← data

ª®®®®®¬
,

where op ∈ {add, rem, upd} is the proposal type and where data
stores

• (add proposals) data = (ID′, ikid′), where ikid′ is the (ID of

the) init key ID′ is to be added with;

• (remove proposals) data = ID′;

• (update proposals) data = ⊥.
Observe that one crucial difference between the CGKA and SGM

games is that the CGKA game does not explicitly model the delivery

of proposals. This is due to the fact that a CGKA is assumed to be

run over authenticated channels, and hence there is no way for A
to inject malicious proposals, and, consequently, the proper delivery

of proposals can be outsourced to the higher-level protocol.

Creating commits. The commit oracle (Figure 11) allows A to

instruct a party ID to execute a commit operations. It works analo-

gously to its SGM-game counterpart. Bookkeeping calls

HG.commit(ID, pid), which creates a new HG node

𝑣 =

©«
.vid ← idCtr++

.orig ← ID
.pid ← pid

ª®¬
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// ID creates new group

create-group(ID, ikid, 𝑟 )

req *compat-create(ID, ikid)

isk← IK-SK[ikid]

(𝛾[ID], 𝐼 )← Create(𝛾[ID], isk; 𝑟 )

vid← HG.create(ID, 𝑟 )

Key[vid]← 𝐼

BR[vid]← (𝑟 ̸= ⊥)

V-Pt[ID]← vid

return vid
// ID proposes to add ID′

prop-add-user(ID, ID′, ikid′)
req *compat-prop(add, ID, ID′, ikid′)

ipk′ ← IK-PK[ikid′]

(𝛾[ID], 𝑃 )← Add(𝛾[ID], ID′, ipk′)

pid← Props.new(add, ID, (ID′, ikid′))
PM[pid]← 𝑃

return (pid, 𝑃 )

// ID proposes to remove ID′

prop-rem-user(ID, ID′)
req *compat-prop(rem, ID, ID′,⊥)

(𝛾[ID], 𝑃 )← Remove(𝛾[ID], ID′)

pid← Props.new(rem, ID, ID′)
PM[pid]← 𝑃

return (pid, 𝑃 )

// ID proposes to update

prop-up-user(ID, 𝑟 )

req *compat-prop(upd, ID,⊥,⊥)

(𝛾[ID], 𝑃 )← Update(𝛾[ID]; 𝑟 )

pid← Props.new(upd, ID,⊥)

BR[vid]← (𝑟 ̸= ⊥)

PM[pid]← 𝑃

return (pid, 𝑃 )

// ID commits proposals pid
commit(ID, pid, 𝑟 )

req *compat-commit(ID, pid)

vid← HG.commit(ID, pid)

(𝛾[ID], 𝐼 ,𝑊pub,Wpriv,𝑇 )← Commit(𝛾[ID], PM[pid]; 𝑟 )

Key[vid]← 𝐼

BR[vid]← (𝑟 ̸= ⊥)

for ID′ ∈ HG.roster(V-Pt[ID])

CM[vid, ID′]← 𝑇

(ID1, . . . , ID𝑚 )← Props.addedIDs(pid)

for 𝑖 = 1, . . . ,𝑚

WMpub[vid, ID𝑖 ]←𝑊pub

WMpriv[vid, ID𝑖 ]←Wpriv[ID𝑖 ]

return (vid,𝑇 ,𝑊pub,Wpriv)

Figure 11: Oracles for group creation, add, remove, update

proposals and commits of the security game for continuous

group key agreement schemes. The compatibility functions are

described in the accompanying text; a formal description is

provided in Figure 14.

// Process commit msg for ID and epoch vid

process(vid, ID)

req *compat-process(vid, ID)

𝑇 ← CM[vid, ID]

P← PM[HG[vid].pid]

(𝛾[ID],GI, 𝐼 )← Proc-Com(𝛾[ID],𝑇 , P)

if ¬HG.checkGI(vid,GI) ∨ Key[vid] ̸= 𝐼

win
if ¬Del[ID]

V-Tr[ID]← V-Pt[ID]

if HG.isRemoved(vid, ID)

V-Pt[ID]← vidroot
else

V-Pt[ID]← vid
𝑖[ID]← 0

P-St[ID]← ∅
return GI

// Reveal the update secret of epoch vid

reveal(vid)

req Key[vid] ̸= 𝜖

req ¬(Reveal[vid] ∨ Chall[vid])

Reveal[vid]← true
return Key[vid]

// Challenge the update secret of epoch vid

chall(vid)

req Key[vid] ̸= 𝜖

req ¬(Reveal[vid] ∨ Chall[vid])

𝐼0 ← Key[vid]

𝐼1 ← I
Chall[vid]← true
return 𝐼𝑏

// Welcome msg. of epoch vid delivered to ID

dlv-WM(vid, ID)

req *compat-dlv-WM(vid, ID)

𝑊pub ←WM-pub[vid, ID]

𝑊priv ←WM-priv[vid, ID]

ikid← HG.addedIK(vid, ID)

isk← IK-SK[ikid]

let 𝑣 s.t. 𝑣 .vid = vid
orig← 𝑣 .orig = vid
(𝛾[ID],GI, 𝐼 )← Join(ID, orig,𝑊pub,𝑊priv, isk)

if ¬HG.checkGI(vid,GI) ∨ Key[vid] ̸= 𝐼

win
if ¬Del[ID]

IK-Tr[ID] +← ikid
IK-St[ID] −← ikid
V-Pt[ID]← vid
return GI

Figure 12: Part one of oracles for message processing, cor-

ruption, and challenges of the security game for continuous

group key agreement schemes. The compatibility functions are

described in the accompanying text; a formal description is

provided in Figure 14.
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// Corrupt ID

corr(ID)

V-Lk +← {(vid, ID) | vid ∈ {V-Pt[ID]} ∪ V-Tr[ID]}
IK-Lk +← IK-St[ID] ∪ IK-Tr[ID]

HG.corrHanging(ID)

return 𝛾[ID]

// Enable no-delete for ID

no-del(ID)

disable deletions for ID
Del[ID]← false

// Safety for privacy

*priv-safe
return ∀vid : Chall[vid] =⇒ *CGKA-priv(vid)

Figure 13: Part two of oracles for message processing, cor-

ruption, and challenges of the security game for continuous

group key agreement schemes. The compatibility functions are

described in the accompanying text; a formal description is

provided in Figure 14.

as a child of ID’s current epoch V-Pt[ID] and returns vid = 𝑣 .vid.
Note that the key output by Commit is stored in array Key. Further-
more, observe that the algorithm outputs (one) public and several

private welcome messages (one for each newly added party). The

private welcome messages are not returned to A and are deliv-

ered securely to their intended recipient—the idea being that these

messages are encrypted by the higher-level application.

Process control messages. The oracles process and dlv-WM (Fig-

ure 13) allow the attacker to deliver commit messages (to existing

group members) resp. welcome messages (to new group members).

The oracles works much like their SGM counterparts, except that

all the information required by Proc-Com resp. Join is supplied by

the game. The oracles also check that the key 𝐼 output by Proc-Com
resp. Join and matches the one stored in array Key during the cor-

responding call to commit.

Key-reveal and challenge oracles. For each epoch, the attacker A
gets to either see the actual key output by the protocol or a challenge

by calling reveal or chall (Figure 13), respectively. Oracle chall
outputs either the real key or a completely random one, depending

on the secret internal bit 𝑏 chosen at the onset of the game.

Corruption oracles. The oracles related to corruption in the CGKA

game (Figure 13) are:

• corr(ID): leaks the state of ID to A;

• no-del(ID): instructs ID to stop deleting old values.

A.2.6 Safety. At the end of the execution of the CGKA security

game, the procedure *priv-safe ensures that the attacker has only
challenged in epochs that are considered secure by the (generic)

safety predicate *CGKA-priv. If the condition is not satisfied, the

attacker loses the game.

A.2.7 Advantage. Let Π = *CGKA-priv be the generic safety pred-
icate used in the CGKA definition. The attackerA is parameterized

by it’s running time, 𝑡 , and the number of challenge queries, 𝑞, and

referred to as (𝑡, 𝑞)-attacker. The advantage of A against a CGKA

scheme K w.r.t. to predicate Π is denoted by Adv
K
CGKA,Π(A).

Definition A.1. A CGKA scheme K is (𝑡, 𝑞, 𝜀)-secure w.r.t. predicate
Π, if for all (𝑡, 𝑞)-attackers,

Adv
K
CGKA,Π(A) ≤ 𝜀 .

*compat-create(ID, ikid)

chk ikid ∈ IK-St[ID]

return V-Pt[ID] = vidroot
*compat-prop(op, ID, ID′, ikid)

vid← V-Pt[ID]

chk vid ̸= vidroot
𝐺 ← HG.roster(vid)

select op
case add do

chk ∃ipk′ : IK-PK[ikid′] = ipk′

chk ID′ /∈ 𝐺
case rem do

chk ID′ ∈ 𝐺
return true

*compat-commit(ID, pid)

vid← V-Pt[ID]

chk vid ̸= vidroot
G← HG.roster(vid)

for pid ∈ pid
𝑝 ← Props[pid]

chk 𝑝.vid = vid
G← *app-prop(G, 𝑝)

chk G ̸= ⊥
chk ID /∈ G
return true

*compat-process(vid, ID)

chk HG.isChild(V-Pt[ID], vid)

return true
*app-prop(G, 𝑝)

req 𝑝.orig ∈ G
select 𝑝.op

case add do
(ID′, ·)← 𝑝.data
req ID′ /∈ G
G +← ID′

case rem do
ID′ ← 𝑝.data
req ID′ ∈ 𝐺
G −← ID′

return G
*compat-dlv-WM(vid, ID)

chk V-Pt[ID] = vidroot
ikid← HG.addedIK(vid, ID)

chk ikid ̸= ⊥
∧ ikid ∈ IK-St[ID]

return true
Figure 14: Compatibility oracles of the security game for con-

tinuous group key agreement schemes.
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B FORWARD-SECURE GROUP AEAD
B.1 Syntax
• 𝑣 ← Init(𝑘𝑒 , 𝑛, ID): takes as input a key 𝑘𝑒 , the group size 𝑛,

as well as a party ID ID and generates the initial state.

• (𝑣 ′, 𝑒) ← Send(𝑣, 𝑎,𝑚) generates ciphertext 𝑒 encrypting

plaintext𝑚 and authenticating associated data 𝑎;

• (𝑣 ′, S, 𝑖,𝑚)← Rcv(𝑣, 𝑎, 𝑒): decrypts ciphertext 𝑒 to plaintext

𝑚 and verifies associated data 𝑎; also outputs a pair (S, 𝑖)
consisting of sender ID S and message index 𝑖 .

B.2 Security
B.2.1 Main oracles. The oracles of the FS-GAEAD game are de-

picted in Figure 15.

Initialization. At the onset of the FS-GAEAD security game, a

random bit 𝑏 and a uniformly random key 𝑘𝑒 are chosen, and the

initialization algorithm is run for all group members in 𝐺 (which

is specified by an argument to the initialization procedure). The

security game also initializes a message counter 𝑖[ID] for each party.

Additionally, the game maintains the following variables, which

work analogously to their counterparts in the SGM game.

• a set Chall of pairs (S, 𝑖) recording that the 𝑖th message sent

by S was a challenge,

• a trash array AM-Tr[ID] of pairs (S, 𝑖) keeping track of non-

deleted key material by ID,

• a set AM-Lk of elements (ID,AM-Rcvd,AM-Tr[ID]), where

AM-Tr[ID] keeps track of themessages whose keymaterial is

leaked via corruption of ID, and AM-Rcvd are the messages

that have been already received at the time of corruption.

• a Boolean array Del[ID] keeping track of which parties are

deleting old values, and

• an arrayAM[S, 𝑖, R] of triples (𝑎,𝑚, 𝑒) consisting of associated

data (AD), plaintext, and ciphertext.

The recorded data informs a safety predicate *priv-safe evaluated
at the end of the game to determine whether a given execution was

legal.

Sending messages and challenges. The oracle send(S, 𝑎,𝑚) allows

the attacker to have party S send AD 𝑎 and message 𝑚 (to all

other group members). The oracle runs algorithm Send, which
produces a ciphertext 𝑒 . The triple (𝑎,𝑚, 𝑒) is recorded in array AM.

Oracle challworks similarly, except that it takes two (equal-length)

messages as input and passes one of them to Send; which one is

chosen is determined by the secret random bit 𝑏 chosen initially.

Furthermore, the pair (S, 𝑖[S]) is recorded as being a challenge.

Delivering and injecting ciphertexts. Oracle dlv-AM(S, 𝑖,R) allows

A to have the ciphertext corresponding to the 𝑖th message sent

by S delivered to R. The ciphertext and the corresponding AD are

fed to algorithm Rcv, which must correctly decrypt the ciphertext

and identify sender S and message number 𝑖 . The pair (S, 𝑖) is set as
“received” by R by setting AM[S, 𝑖, R]← received which indicates

that the corresponding key material should now have been deleted

by R; in case R does not delete old values (i.e., Del[R] = false), the
pair is added to AM-Tr.

// Initialize group

init(𝐺 )

𝑏 ← {0, 1}
𝑘𝑒 ← K
for ID ∈ 𝐺

𝑣[ID]← Init(𝑘𝑒 , |𝐺 |, ID)

𝑖[ID]← 0

Chall← ∅
AM-Tr[·]← ∅
AM-Lk← ∅
AM[·, ·, ·]← 𝜖

Del[·]← 𝜖

// S sends 𝑚 with AD 𝑎

send(S, 𝑎,𝑚)

(𝑣[S], 𝑒)← Send(𝑣[S], 𝑎,𝑚)

𝑖[S]++

for R ∈ 𝐺 \ {S}
AM[S, 𝑖[S],R]← (𝑎,𝑚, 𝑒)

return 𝑒
// Corruption of ID
corr(ID)

AM-Rcvd← {(S, 𝑖) | AM[S, 𝑖, ID] = received}
AM-Lk +← (ID,AM-Rcvd,AM-Tr[ID])

return 𝑣[ID]

// Message delivery

dlv-AM(S, 𝑖,R)

req AM[S, 𝑖,R] ̸= {𝜖, received}
(𝑎,𝑚, 𝑒)← AM[S, 𝑖,R]

(𝑣[R], S′, 𝑖′,𝑚′)← Rcv(𝑣[R], 𝑎, 𝑒)

if (S′, 𝑖′,𝑚′) ̸= (S, 𝑖,𝑚)

win
if ¬Del[R]

AM-Tr[R] +← (S, 𝑖)
AM[S, 𝑖,R]← received

// stop deletions for ID
no-del(ID)

Del[ID]← false
// Message injection

inj-AM(𝑎′, 𝑒′,R)

req ∀S, 𝑖, 𝑖 : AM[S, 𝑖,R] ̸= (𝑎′, 𝑖, 𝑒′)
(𝑣[S], S′, 𝑖′,𝑚′)← Rcv(𝑣[R], 𝑎, 𝑒)

if𝑚′ ̸= ⊥
if (*AM-sec(S′, 𝑖′)) ∨ AM[S′, 𝑖′,R] = received

win
AM[S′, 𝑖′,R]← received

return (S′, 𝑖′,𝑚′)
// S challs 𝑚0, 𝑚1

chall(S, 𝑎,𝑚0,𝑚1)

req |𝑚0 |= |𝑚1 |
(𝑣[S], 𝑒)← Send(𝑣[S], 𝑎,𝑚𝑏 )

𝑖[S]++

for R ∈ 𝐺 \ {S}
AM[S, 𝑖[S],R]← (𝑎,𝑚, 𝑒)

Chall +← (S, 𝑖)
return 𝑒

// Safety predicate

*priv-safe
if ∀(S, 𝑖) : (S, 𝑖) ∈ Chall =⇒ *FS-sec(S, 𝑖)

return true
return false

Figure 15: The main oracles of the FS-GAEAD security game.

Oracle inj-AM can be used byA to inject any non-honestly gen-

erated AD/ciphertext pair. Algorithm Rcv must reject all such pairs

unless they are compromised, which is the case ifA has learned the

corresponding key material via state compromise. Whether or not

this is the case is determined by the safety helper function *FS-sec,
which is discussed below. Irrespective of whether a compromise

has occurred, Rcv is required to detect and prevent replays.
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Corruption. By calling oracle corr(ID) the attacker can learn the cur-

rent state of party ID. The game adds the triple (ID,AM-Rcvd,AM-Tr[ID])

to the set AM-Lk to indicate that ID’s state is now compromised,

but the messages recorded in AM-Rcvd are supposed to remain

secure (because the corresponding key material must have been

deleted); the game also adds potential trash, AM-Tr[ID], stored by

ID to the same set.

B.2.2 Privacy-related safety. At the end of the execution of the FS-

GAEAD security game, the procedure *priv-safe ensures that the
attacker has only challenged messages that are considered secure

by the (generic) safety predicate *FS-sec. If the condition is not

satisfied, the attacker loses the game.

B.2.3 Advantage. Let Π = *FS-sec be the generic safety predicate

used in the FS-GAEAD definition. The attacker A is parameter-

ized by it’s running time 𝑡 and the number of challenge queries

𝑞, referred to as (𝑡, 𝑞)-attacker. The advantage of A against an FS-

GAEAD scheme F w.r.t. to predicate Π is denoted by Adv
FS
fs,Π

(A).

Definition B.1. An FS-GAEAD scheme F is (𝑡, 𝑞, 𝜀)-secure w.r.t.
predicate Π, if for all (𝑡, 𝑞)-attackers,

Adv
F
FS-GAEAD,Π(A) ≤ 𝜀 .

C PRF-PRNGS
C.1 Syntax
A PRF-PNRG PP is an algorithm (𝜎 ′, 𝑅)← PP(𝜎, 𝐼,𝐶): it takes the

current state 𝜎 , absorbs input 𝐼 along with context information 𝐶 ,

and produces a new state 𝜎 ′ as well as an output string 𝑅.

C.2 Security
A PRF-PRNG must satisfy PCFS (cf. Section 3.2) and be resilient to

splitting-attacks. Therefore, the security game for PRF-PRNGs (cf.

Figure 16) follows the same history-graph approach as the defini-

tions of SGM and CKGA. However, since the game only consists of

the state of the PRF-PRNG and there are no parties, it suffices to

keep track of a much smaller amount information:

• Nodes of the history graph only consist of the vid.

• For every node vid,

– the value 𝜎[vid] stores the corresponding state of the PRF-

PRNG,

– the value 𝑅[vid] stores the corresponding output of the

PRF-PRNG, and

– the value BI[vid] is a flag indicating whether the input 𝐼

absorbed to reach the state 𝜎[vid] is known to the attacker.

• The set V-Lk records the vids for which the PRF-PRNG state

is leaked to the attacker.

The root node vidroot of the history graph corresponds to the initial

state of the PRF-PRNG, which is assumed to be the all-zero string.

The attacker A has the following capabilities:

• He may create a new child state of any node vid by calling

oracle process and specifying an input/context pair (𝐼 ,𝐶); of

course, only one such call per triple (vid, 𝐼 ,𝐶) is allowed. If

init
𝑏 ←R {0, 1}
vidroot ← HG.init
𝜎[vidroot]← 0

V-Lk← ∅
𝑅[·]← ∅
Reveal[·]← ∅
Chall[·]← ∅
BI[·]← ∅

corr (vid)

V-Lk +← vid
return 𝜎[vid]

process(vid, 𝐼 ,𝐶)

req ̸∃ child of vid for (𝐼 ,𝐶)

vid′ ← HG.create(vid, 𝐼 )
BI[vid′]← (𝐼 ̸= ⊥)

(𝜎[vid′], 𝑅[vid′])← PP(𝜎[vid], 𝐼 ,𝐶)

return vid′

reveal(vid)

req 𝑅[vid] ̸= 𝜀

req ¬(Reveal[vid] ∨ Chall[vid])

Reveal[vid]← true
return 𝑅[vid]

chall(vid)

req 𝑅[vid] ̸= 𝜀

req ¬(Reveal[vid] ∨ Chall[vid])

𝑅0 ← 𝑅[vid]

𝑅1 ← R
Chall[vid]← true
return 𝑅𝑏

safe
return ∀vid : Chall[vid] =⇒ *PP-secure(vid)

Figure 16: PRF-PRNG security game.

the call is made with 𝐼 ̸= ⊥, the game samples 𝐼 it randomly.

The value BI[vid] is set accordingly.

• He may reveal or challenge outputs 𝑅[vid] corresponding to

arbitrary nodes vid ̸= vidroot by calling the corresponding

oracles reveal and chall, respectively. The flags Reveal[vid]

resp. store Chall[vid] whether a reveal resp. a challenge has

been requested for vid.

• Finally, A can also leak the state 𝜎[vid] for any epoch vid ̸=
vidroot using oracle corr.

As per usual, at the end of the game, the oracle safe ensures thatA
does not win the game trivially; safe uses a generic safety predicate
*PP-secure.

C.2.1 Advantage. Let Π = *PP-secure be the generic safety predi-

cate used in the PRF-PRNG definition. The attackerA is parameter-

ized by it’s running time 𝑡 , referred to as 𝑡-attacker. The advantage

ofA against a PP scheme PRF-PRNGw.r.t. to predicateΠ is denoted

by Adv
PP
PRF-PRNG,Π(A).
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Definition C.1. A PRF-PRNG scheme PP is (𝑡, 𝜀)-secure w.r.t. pred-
icate Π, if for all 𝑡-attackers,

Adv
PP
PRF-PRNG,Π(A) ≤ 𝜀 .

D SECURE GROUP MESSAGING
In this section we define compatibility helpers for SGM.

*compat-create(ID, skid,wkid)

chk V-Pt[ID] = vidroot
chk SK-ID[skid] = ID
chkWK-SK[wkid] = skid
chk skid ∈ SK-St[ID]

chk wkid ∈ WK-St[ID]

return true
*compat-prop(op, ID, ID′, skid)

vid← V-Pt[ID]

chk vid ̸= vidroot
𝐺 ← HG.roster(vid)

select op
case add do

chk
CL-KB[ID, ID′] ̸= ∅

chk ID′ /∈ 𝐺
case rem do

chk ID′ ∈ 𝐺
case upd do

chk skid ∈ SK-St[ID]

return true
*compat-dlv-PM(ID, pid)

chk Props[pid].vid = V-Pt[ID]

return true
*compat-inj-PM(ID, 𝑃 ′)

vid← V-Pt[ID]

chk vid ̸= vidroot
chk ̸∃ pid :

Props[pid].vid = vid
∧ 𝑃 ′ = PM[pid]

return true
*compat-commit(ID, pid)

vid← V-Pt[ID]

chk vid ̸= vidroot
chk pid ⊆ P-St[ID]

G← HG.roster(vid)

for pid ∈ pid
G← *app-prop(G, pid)

chk G ̸= ⊥
return true

*app-prop(G, pid)

𝑝 ← Props[pid]

req 𝑝.orig ∈ G
select op

case add do
(ID′, ·, ·)← 𝑝.data
req ID′ /∈ G
G +← ID′

case rem do
ID′ ← 𝑝.data
req ID′ ∈ 𝐺
G −← ID′

return G

*compat-dlv-CM(ID, vid)

chk HG.isChild(V-Pt[ID], vid)

chk HG[vid].pid ⊆ P-St[ID]

return true
*compat-inj-CM(ID,𝑇 ′)

vid← V-Pt[ID]

chk vid ̸= vidroot
chk ∀vid′ ∈ HG.children(vid) :

𝑇 ′ ̸= CM[vid′, ID]

return true
*compat-dlv-CM(ID, vid)

chk HG.isChild(V-Pt[ID], vid)

chk HG[vid].pid ⊆ P-St[ID]

return true
*compat-inj-CM(ID,𝑇 ′)

vid← V-Pt[ID]

chk vid ̸= vidroot
chk ∀vid′ ∈ HG.children(vid) :

𝑇 ′ ̸= CM[vid′, ID]

return true
*compat-dlv-WM(ID, vid)

chk V-Pt[ID] = vidroot
wkid← HG.addedWK(ID, vid)

chk wkid ̸= ⊥
∧ wkid ∈ WK-St[ID]

return true
*compat-inj-WM(ID,𝑊 ′

)

vid← V-Pt[ID]

chk vid = vidroot
chk ∀vid′ :

𝑊 ′ ̸= CM[vid′, ID]

return true
*compat-send(S)

chk V-Pt[ID] ̸= vidroot
return true

*compat-chall(S,𝑚0,𝑚1)

chk V-Pt[ID] ̸= vidroot
chk |𝑚0 |= |𝑚1 |
return true

*compat-dlv-AM(vid, S, 𝑖,R)

chk vid ∈ V-St[R]

chk AM[vid, S, 𝑖,R] /∈
{𝜖, received}

return true
*compat-inj-AM(𝑎, 𝑒,R)

chk ∀S, vid, 𝑖,𝑚 :

AM[vid, S, 𝑖,R] ̸= (𝑎,𝑚, 𝑒)

return true

Figure 17: Compatibility oracles of the security game for secure

group-messaging schemes.

E SGM CONSTRUCTION
In this section we formally define the helper functions of our SGM

construction.

// Returns ids, wpks, of new parties

*added(P)

ID[·]← 𝜀

wpk[·]← 𝜀

𝑖 ← 1 for 𝑃 ∈ P
if 𝑃 = ("add", ·, ·, (ID𝑎, kb′), ·)

(wpk, ·)← kb′

ID[𝑖]← ID𝑎

wpk[𝑖]← wpk
𝑖++

return (ID,wpk)

// Returns spks after applying props

*new-spks(epid, P)

spk← s.Ep-SPK[epid]

for 𝑃 ∈ P
if 𝑃 = ("add", ·, ·, (ID𝑎, kb′), ·)

(·, spk)← kb′

spk[ID𝑎]← spk
if 𝑃 = ("rem", ·, ·, ID𝑟 , ·)

spk[ID𝑟 ]← 𝜀

if 𝑃 = ("upd", ·, ID𝑢 , spk, ·)
spk[ID𝑢 ]← spk

return spk
// Returns position of ID in roster

*roster-pos(ID,G)

[ID1, . . . , ID𝑛]← G
for 𝑖 ∈ [1, 𝑛]

if ID𝑖 = ID
return 𝑖

// Returns Proposal Info

*get-propInfo(P′)
if P′ = ("add", ·, ID𝑠 , (ID𝑎, kb′), ¯P)

op = add

orig = ID𝑠

(wpk, spk)← kb′; data = (ID𝑎,wpk, spk)

if P′ = ("rem", ·, ID𝑠 , ID𝑟 , ¯P)

op = rem

orig = ID𝑠

data = ID𝑟

if P′ = ("upd", ·, ID𝑠 , spk, ¯P)

op = upd

orig = ID𝑠

data = spk
return (op, orig, data)

Figure 18: The SGM Construction : Helper Algorithm.

Helpers. *added receives a vector of proposals P and returns the

ids and welcome public keys of newly added members. *new-spks
receives an epoch id and vector of proposals, (epid,P), and returns

the public verification keys for the ids affected by the proposals in P.
*roster-pos returns the position of ID in G, and *get-propInfo
receives a proposal P

′
and returns the proposal information, namely

the operation, op, the proposal origin, orig, and the data, data,
where if op = add, data holds the id, ID𝑎 , welcome key material,

wpk, and the signature verification key spk, of the newly added

member. If op = rem, data holds the id of the removed party ID𝑟 ,

and if op = upd, data holds the updated verification key spk.
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