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Abstract. Semantic Web endeavors have mainly focused on issues
pertaining to knowledge representation and ontology design.
However, besides understanding information metadata stated by
subjects, knowing about their credibility becomes equally cru-
cial. Hence, trust and trust metrics, conceived as computational
means to evaluate trust relationships between individuals, come
into play. Our major contribution to Semantic Web trust manage-
ment through this work is twofold. First, we introduce a classifi-
cation scheme for trust metrics along various axes and discuss
advantages and drawbacks of existing approaches for Semantic
Web scenarios. Hereby, we devise an advocacy for local group
trust metrics, guiding us to the second part which presents Ap-
pleseed, our novel proposal for local group trust computation.
Compelling in its simplicity, Appleseed borrows many ideas from
spreading activation models in psychology and relates their con-
cepts to trust evaluation in an intuitive fashion. Moreover, we
provide extensions for the Appleseed nucleus that make our trust
metric handle distrust statements.
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1. Introduction

In our world of information overload and global con-
nectivity leveraged through the Web and other types of
media, social trust (McKnight and Chervany, 1996) be-
tween individuals becomes an invaluable and precious
good. Hereby, trust exerts an enormous impact on deci-
sions whether to believe or disbelieve information as-
serted by other peers. Belief should only be accorded to
statements from people we deem trustworthy. Hence,
trust assumes the role of an instrument for complexity
reduction (Luhmann, 1998). However, when supposing
huge networks such as the Semantic Web, trust judge-
ments based on personal experience and acquaintance-
ship become unfeasible. In general, we accord trust,
concisely defined by Mui as the “subjective expectation

an agent has about another’s future behavior based on
the history of their encounters” (Mui, Mohtashemi and
Halberstadt, 2002), to only small numbers of people.
These people, again, trust another limited set of people,
and so forth. The network structure emanating from our
very person, composed of trust statements linking in-
dividuals, constitutes the basis for trusting people we
do not know personally. Playing an important role for
the conception of Semantic Web trust infrastructure,
the latter structure has been dubbed “Web of Trust”
(Golbeck, Parsia and Hendler, 2003).

Its effectiveness has been underpinned through em-
pirical evidence from social psychology and sociol-
ogy, indicating that transitivity is an important char-
acteristic of social networks (Holland and Leinhardt,
1972; Rapoport, 1963). To the extent that communica-
tion between individuals becomes motivated through
positive affect, drive towards transitivity can also be
explained in terms of Heider’s famous “balance the-
ory” (Heider, 1958), i.e., individuals are more prone to
interact with friends of friends than unknown peers.

Hence, we might be tempted to adopt the policy
of trusting all those people who are trusted by per-
sons we trust, exploiting transitivity in social networks.
Trust would thus propagate through the network and
become accorded whenever two individuals can reach
each other via at least one trust path. However, com-
mon sense tells us we should not rely upon this strategy.
More complex metrics are needed in order to more sen-
sibly evaluate trust between two persons. Among other
features, these metrics must take into account subtle
social and psychological aspects of trust and suffice
criteria of computability and scalability, likewise.

The paper is organized as follows. In order to as-
sess diverse properties of metrics, Section 2.1 briefly
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Fig. 1. Sample web of trust for agent a.

introduces existing trust metrics and classifies them ac-
cording to our proposed classification scheme. An in-
vestigation of trust metric classes and their fitness for
Semantic Web scenarios follows in Section 2.2, along
with an overview of our asserted trust model. Besides,
Section 2.2 exposes the urging need for local group
trust metrics and gives examples of possible applica-
tion scenarios. Section 3 forms the second part of the
paper and explicitly deals with these local group trust
metrics. We briefly sketch the well-known Advogato
trust metric and introduce our novel Appleseed trust
metric in Section 3.2. Appleseed constitutes the ma-
jor contribution of this paper and represents our own
approach to local group trust computation. Many of
its ideas and concepts borrow from spreading activa-
tion models, which simulate human semantic memory.
Section 3.3 matches Appleseed and Advogato against
each other, discussing advantages and drawbacks of
either approach. Furthermore, results of experiments
conducted to evaluate the behavior of Appleseed un-
der diverse conditions are illustrated in Section 3.4.
Section 3.5 indicates possible modifications and gives
some implementation details, while Section 3.6 briefly
presents the testbed we used to base all our experiments
and comparisons upon. Eventually, in Section 4.1, se-
mantics and implications of distrust are discussed, fol-
lowed by the integration of distrust into the Appleseed
framework in Section 4.2.

2. Trust in Social Networks

Trust represents an invaluable and precious good one
should award deliberately. Trust metrics compute quan-
titative estimates of how much trust an agent a should

accord to its peer b, taking into account trust rat-
ings from other persons on the network. These met-
rics should also act “deliberately”, not overly award-
ing trust to persons or agents whose trustworthiness is
questionable.

2.1. Classification of trust metrics
Applications for trust metrics and trust management
(Blaze, Feigenbaum and Lacy, 1996) are rife and not
confined to the Semantic Web. First proposals for met-
rics date back to the early nineties, where trust metrics
were deployed in various projects to support the Pub-
lic Key Infrastructure (Zimmermann, 1995). Metrics
proposed in Levien and Aiken (1998), Reiter and Stub-
blebine (1997), Maurer (1996), and Beth, Borcherding
and Klein (1994) count among the most popular ones
for public key authentication and have initiated fruit-
ful discussions. New areas and research fields apart
from PKI have come to make trust metrics gain mo-
mentum. Peer-to-peer networks, ubiquitous and mobile
computing, and rating systems for online communities,
where maintenance of explicit certification authorities
is not feasible anymore, have raised the research inter-
est in trust. The whole plethora of available metrics can
hereby be defined and characterized along various clas-
sification axes. We identify three principal dimensions
with distinctive features. These axes are not orthog-
onal, though, for various features impose restrictions
on the feature range of other dimensions. Mind that
some of the below mentioned categories have already
been defined in prior work. For instance, Guha (2003)
differentiates between local and global trust, and dis-
tinctive features between scalar and group trust met-
rics are discussed in Levien (2003). However, to our
knowledge, no explicit categorization of trust metrics
along various axes, supplemented with an analysis of
axis interaction, exists. We therefore regard the clas-
sification scheme provided below as one major con-
tribution of this paper. Its results are also synthesized
in Fig. 2.

2.1.1. Network perspective. The first dimension in-
fluences semantics assigned to the values computed.
Trust metrics may basically be subdivided into ones
with global, and ones with local scope. Global trust
metrics take into account all peers and trust links con-
necting them. Global trust ranks are assigned to an
individual based upon complete trust graph informa-
tion. Many global trust metrics, such as those presented
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in Kamvar, Schlosser and Garcia-Molina (2003),
Guha (2003), and Richardson, Agrawal and Domingos
(2003), borrow their ideas from the renowned PageR-
ank algorithm Page et al. (1998) to compute web page
reputation. The basic intuition behind the approach is
that nodes should be ranked higher the better the rank of
nodes pointing to them. Obviously, the latter approach
works for trust and page reputation likewise.

Trust metrics with local scope, on the other hand,
take into account personal bias. Interestingly, some re-
searchers claim that only local trust metrics are “true”
trust metrics, since global ones compute overall repu-
tation rather than personalized trust (Mui, Mohtashemi
and Halberstadt, 2002). Local trust metrics take the
agent for whom to compute trust as an additional in-
put parameter and are able to operate on partial trust
graph information. The rationale behind local trust met-
rics is that persons an agent a trusts may be com-
pletely different from the range of individuals that
agent b deems trustworthy. Local trust metrics ex-
ploit structural information defined by personalized
webs of trust. Hereby, the personal web of trust for
individual a is given through the set of trust relation-
ships emanating from a and passing through nodes it
trusts either directly or indirectly, as well as the set
of nodes reachable through these relationships. Merg-
ing all webs of trust engenders the global trust graph.
Local trust metrics comprise Levien’s Advogato trust
metric (Levien and Aiken, 2000), metrics for modelling
the Public Key Infrastructure (Beth, Borcherding and
Klein, 1994; Maurer, 1996; Reiter and Stubblebine,
1997), Golbeck’s metrics for Semantic Web trust
(Golbeck, Parsia and Hendler, 2003), and Sun Mi-
crosystems’s Poblano (Chen and Yeager, 2003). The
latter work hereby strongly resembles Abdul-Rahman
and Hailes Abdul-Rahman and Hailes (1997).

2.1.2. Computation locus. The second axis refers to
the place where trust relationships between individu-
als are evaluated and quantified. Local or centralized
approaches perform all computations in one single ma-
chine and hence need to be granted full access to rele-
vant trust information. The trust data itself may hereby
be distributed over the network. Most of the before-
mentioned metrics count among the class of centralized
approaches.

Distributed metrics for the computation of trust
and reputation, such as those described in Richardson,
Agrawal and Domingos (2003), Kamvar, Schlosser and
Garcia-Molina (2003), and Sankaralingam, Sethumad-
havan and Browne (2003), equally deploy the load of
computation on every trust node in the network. Upon
receiving trust information from its predecessor nodes
in the trust graph, an agent a merges the data with its
own trust assertions and propagates synthesized values
to its successor nodes. The entire process of trust com-
putation is necessarily asynchronous and its conver-
gence depends on the eagerness or laziness of nodes to
propagate information. Another characteristic feature
of distributed trust metrics refers to the fact that they are
inherently global. Though the individual computation
load is decreased with respect to centralized computa-
tion approaches, nodes need to store trust information
about any other node in the system.

2.1.3. Link evaluation. The third dimension distin-
guishes scalar and group trust metrics. According to
Levien Levien (2003), scalar metrics analyze trust as-
sertions independently, while group trust metrics eval-
uate groups of assertions “in tandem”. PageRank Page
et al. (1998) and related approaches count among global
group trust metrics, for the reputation of one page de-
pends on the ranks of referring pages, thus entailing
parallel evaluation of relevant nodes thanks to mutual
dependencies. Advogato (Levien and Aiken, 2000) rep-
resents an example for local group trust metrics. Most
other trust metrics count among the category of scalar
ones, tracking trust paths from sources to targets and not
performing parallel evaluations of groups of trust asser-
tions. Hence, another basic difference between scalar
and group trust metrics refers to their functional de-
sign. In general, scalar metrics compute trust between
two given individuals a and b taken from set V of all
agents.

On the other hand, group trust metrics generally
compute trust ranks for sets of individuals in V . Hereby,
global group trust metrics assign trust ranks for every
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a ∈ V , while local ones may also return ranked sub-
sets of V . Note that complete trust graph information
is only important for global group trust metrics, but
not for local ones. Informally, local group trust metrics
may be defined as metrics to compute neighborhoods
of trusted peers for an individual a. As input param-
eters, these trust metrics take an individual a ∈ V for
which to compute the set of peers it should trust, as well
as an amount of trust the latter wants to share among
the most trustworthy agents. For instance, in Levien
and Aiken (2000), the amount of trust is said to cor-
respond to the number of agents that a wants to trust.
The output is hence given by a trusted subset of V .

Note that scalar trust metrics are inherently local,
while group trust metrics do not impose any restrictions
on features for other axes.

2.2. Semantic web trust
Most presented metrics and trust models have been pro-
posed for scenarios other than the Semantic Web. In
fact, research in trust infrastructure and metrics for the
latter network of metadata still has to come of age and
gain momentum. Before discussing specific require-
ments and fitness properties of trust metrics along those
axes proposed before, we need to define one common
trust model on which to rely upon for the Semantic Web.
Some steps towards one such common model have
already been taken and incorporated into the FOAF
(Dumbill, 2002) project. FOAF is an abbreviation for
“Friend of a Friend” and aims at enriching personal
homepages with machine-readable content encoded in
RDF statements. Besides various other information,
these publicly accessible pages allow their owners to
nominate all individuals part of the FOAF universe
they know, thus weaving a “web of acquaintances”
(Golbeck, Parsia and Hendler, 2003). Golbeck has ex-
tended the FOAF schema to also contain trust asser-
tions with values ranging from 1 to 9, where 1 de-
notes complete distrust and 9 absolute trust towards
the individual for which the assertion has been issued
(Golbeck, Parsia and Hendler, 2003). Hereby, her
assumption that trust and distrust represent sym-
metrically opposed concepts perfectly aligns with
Abdul-Rahman and Hailes’s work (Abdul-Rahman and
Hailes, 2000).

The model that we adopt is quite similar to FOAF
and its extensions, but only captures the notion of trust
and lack of trust, instead of trust and distrust. Note
that zero trust and distrust are not the same (Marsh,
1994a) and may hence not be intermingled. Explicit

modelling of distrust has some serious implications for
trust metrics and will hence be discussed separately
in Section 4. Mind that only few research endeavors
investigated the implementation of distrust into trust
models, e.g., Jøsang, Gray, and Kinateder (2003) and
Guha (2003), Guha, Raghavan, and Tomkins (2004).

2.2.1. Trust model. In this section, we present the
constituents of our model for the Semantic Web trust
infrastructure. As is the case for FOAF, we assume
that all trust information is publicly accessible for any
agent in the system through machine-readable personal
homepages distributed over the network. This assump-
tion may yield privacy concerns and will be discussed
and justified later.

� Agent set V = {a1, . . . , an}. Similar to the FOAF
approach, we assume agents a ∈ V to be represented
and uniquely identified by the URI of their machine-
readable personal homepage.

� Partial trust function set T = {Wa1 , . . . , Wan }. Ev-
ery agent a is associated with one partial trust func-
tion Wa : V → [0, 1]⊥, which corresponds to the set
of trust assertions that a has stated on its machine-
readable homepage. In most cases, these functions
will be very sparse as the number of individuals for
which an agent is able to assign explicit trust ratings
is much smaller than the total number n of agents on
the Semantic Web:

Wai (a j ) =
{

p, if trust(ai , a j ) = p

⊥, if no rating for a j from ai

Note that the higher the value of Wai (a j ), the more
trustworthy ai deems a j . Conversely, Wai (a j ) = 0
means that ai considers a j to be not trustworthy at
all. The assignment of trust through continuous values
between 0 and 1 and their adopted semantics is in per-
fect accordance with (Marsh, 1994a), where possible
stratifications of trust values are proposed. Our trust
model defines one directed trust graph with nodes be-
ing represented by agents a ∈ V and directed edges
from nodes ai to nodes a j being trust statements with
weight Wai (a j ).

For convenience, we furthermore introduce the par-
tial function W : V × V → [0, 1]⊥ which we define as
the union of all partial functions Wa ∈ T .

2.2.2. Trust metrics for the semantic web. Trust
and reputation ranking metrics have primarily been
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used for public key certification (Reiter and Stub-
blebine, 1996,1997; Levien and Aiken, 1998; Maurer,
1996; Beth, Borcherding and Klein, 1994), rating and
reputation systems part of online communities (Guha,
2003; Levien and Aiken, 2000; Levien, 2003), peer-to-
peer networks (Kamvar, Schlosser and Garcia-Molina,
2003; Sankaralingam, Sethumadhavan and Browne,
2003; Kinateder and Rothermel, 2003; Kinateder and
Pearson, 2003; Aberer and Despotovic, 2001), and
also mobile computing fields (Eschenauer, Gligor and
Baras, 2002). Each of these scenarios favors different
trust metrics. For instance, reputation systems for on-
line communities tend to make use of centralized trust
servers that compute global trust values for all users on
the system (Guha, 2003). On the other hand, peer-to-
peer networks of moderate size rely upon distributed
approaches that are in most cases based upon PageRank
(Kamvar, Schlosser and Garcia-Molina, 2003; Sankar-
alingam, Sethumadhavan and Browne, 2003).

The Semantic Web, however, is expected to be made
up of millions of nodes a representing agents. The fit-
ness of distributed approaches to trust metric compu-
tation, such as depicted in Richardson, Agrawal and
Domingos (2003) and Kamvar, Schlosser and Garcia-
Molina (2003), is hence limited by virtue of various
reasons:

� Trust data storage. Each agent a needs to store trust
information about any other agent b on the Semantic
Web. Agent a uses this information in order to merge
it with own trust beliefs and propagates the synthe-
sized information to trusted agents. Even though we
might expect the size of the Semantic Web to be sev-
eral orders of magnitude smaller than the traditional
Web, the number of agents which to keep trust in-
formation for will still exceed storage capabilities of
“normal” agents.

� Convergence. The structure of the Semantic Web is
diffuse and not subject to some higher ordering prin-
ciple or hierarchy. Furthermore, the process of trust
propagation is necessarily asynchronous. As the Se-
mantic Web is huge in size with possibly numerous
antagonist or idle agents, convergence of trust values
might take a very long time.

The huge advantage of distributed approaches, on
the other hand, is the immediate availability of com-
puted trust information for any other agent in the sys-
tem as well as the fact that agents have to disclose their
trust assertions only to peers they trust (Richardson,

Agrawal and Domingos, 2003). For instance, suppose
that a declares its trust in b to be 0.1, which is very
low. Hence, a might want b not to know about that fact.
As distributed metrics only propagate synthesized trust
values from nodes to successor nodes in the trust graph,
a would not have to disclose its trust statements to b.

As it comes to centralized, i.e., locally computed,
metrics, full trust information access is required for
agents inferring trust. Hence, online communities
based on trust require their users to disclose all trust in-
formation to the community server, but not necessarily
to other peers (Guha, 2003). Privacy is thus maintained.
On the Semantic Web and in the area of ubiquitous and
mobile computing, however, it is not only some central
authority which computes trust. Any agent might want
to do so. Our own trust model, as well as trust mod-
els proposed in Golbeck, Parsia and Hendler (2003),
Eschenauer, Gligor and Baras (2002), and Abdul-
Rahman and Hailes (1997), are hence based upon
the assumption of publicly available trust information.
Though privacy concerns may persist, this assumption
is vital due to the mentioned deficiencies of distributed
computation models. Moreover, centralized global
metrics, such as depicted in Guha (2003) and Page
et al. (1998), also fail to fit the requirements imposed
by the Semantic Web: due to the huge number of agents
issuing trust statements, only dedicated server clusters
could be able to manage the whole bulk of trust relation-
ships. For small agents and applications roaming the
Semantic Web, global trust computation is not feasible.

The traditional as well as the Semantic Web bear
significant traits of small-world networks (Golbeck,
Parsia and Hendler, 2003). Small worlds theory has
been investigated extensively by Stanley Milgram, so-
cial psychologist at Harvard University. His hypothesis,
commonly referred to as “six degrees of separation”,
states that members of any large social network are
connected to each other through short chains of inter-
mediate acquaintances (Gray et al., 2003). Relating his
research results to trust on the Semantic Web, we come
to conclude that average trust path lengths between any
two individuals are small. Hence, locally computed
local trust metrics considering trust paths from trust
sources to trust targets, such as the ones proposed for
PKI (Reiter and Stubblebine, 1996,1997; Levien and
Aiken, 1998; Maurer, 1996; Beth, Borcherding and
Klein, 1994), may be expected to suitably lend them-
selves to the Semantic Web. In contrast to global met-
rics, no clustering of massive CPU power is required
to compute trust.
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Besides centrally computed scalar trust metrics tak-
ing into account personal bias, we advocate local group
trust metrics for the Semantic Web. These metrics bear
several welcome properties with respect to computabil-
ity and complexity, which may be summarized as fol-
lows:

� Partial trust graph exploration. Global metrics re-
quire a priori full knowledge of the entire trust net-
work. Distributed metrics store trust values for all
agents in the system, thus implying massive data
storage demands. On the other hand, when comput-
ing trusted neighborhoods, the trust network only
needs to be explored partially: originating from the
trust source, one only follows those trust edges that
seem promising, i.e., bearing high trust weights, and
which are not too far away from the trust source. In-
spection of personal, machine-readable homepages
is thus performed in a just-in-time fashion. Hence,
prefetching bulk trust information is not required.

� Computational scalability. Tightly intertwined with
partial trust graph exploration is computational com-
plexity. Local group trust metrics scale well to any
social network size, as only tiny subsets of relatively
constant size are visited. This is not the case for
global trust metrics.

By the time of this writing, local group trust met-
rics have been subject to comparatively sparse research
interest and none, to our best knowledge, have been
proposed for the Semantic Web. However, we believe
that local group trust metrics will play an important
role for trust-based communities on the Semantic Web.
Application scenarios for group trust are rife. In order
to not go beyond the scope of this article, we will give
just one detailed example dealing with trust in metadata
statements:

The Semantic Web basically consists of metadata
assertions that machines can understand by virtue of
ontology sharing. However, since the number of agents
able to publish statements is vast, credibility in those
statements should be limited. The issue of trust in Se-
mantic Web content has already been addressed in
Gil and Ratnakar (2002). Herein, the authors propose
a centralized system which allows issuing statements
and analyzing their reliability and credibility. Comple-
mentary to this work by Gil and Ratnakar, the W3C
Annotea Project intends to provide an infrastructure
for assigning annotations to statements (Kahan, 2001).
These statements could also include statements about

the credibility of certain metadata. Supposing such an
environment and supposing an agent a who wants to
reason about the credibility of an assertion s found on
the Semantic Web, local group trust metrics could play
an important role in its quest: not being able to judge the
credibility of s on its own, a could refer to its personal
web of trust and compute its n most trusted peers. The
latter trust neighborhood is now taking part in an opin-
ion poll where a wants to know about the credibility
its trusted peers assign to s. Technically, this could be
achieved by searching Annotea servers for statements
by a’s peers about s. The eventual decision whether to
believe s or not could then be made by averaging the
credibility ratings of its trusted peers. Similar models
with distributed reputation systems based on trust have
been proposed in Kinateder and Rothermel (2003).

3. Local Group Trust Metrics

Local group trust metrics, in their function as means
to compute trust neighborhoods, have not been sub-
ject to mainstream research until now. Actually, sig-
nificant research has been limited to the work done by
Levien (2003), Levien and Aiken (1998), having con-
ceived the Advogato group trust metric. This section
provides an overview of Advogato and introduces our
own Appleseed trust metric, eventually comparing both
approaches.

3.1. Outline of advogato maxflow
The Advogato maximum flow trust metric has been
proposed by Levien and Aiken (2000) in order to dis-
cover which users are trusted by members of an online
community and which are not. Hereby, trust is com-
puted by a centralized community server and consid-
ered relative to a seed of users enjoying supreme trust.
However, the metric is not only applicable to commu-
nity servers, but also to arbitrary agents which may
compute personalized lists of trusted peers and not one
single global ranking for the whole community they
belong to. In this case, the agent itself constitutes the
singleton trust seed. The following paragraphs briefly
introduce basic concepts. For more detailed informa-
tion, refer to Levien and Aiken (2000,1998), and Levien
(2003).

3.1.1. Trust computation steps. Local group trust
metrics compute sets of agents trusted by those being
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part of the trust seed. In case of Advogato, its input is
given by an integer number n, which is supposed to be
equal to the number of members to trust (Levien and
Aiken, 2000), as well as the trust seed s, being a subset
of the entire set of users V . The output is a characteris-
tic function that maps each member to a boolean value
indicating trustworthiness:

TrustM : 2V × N
+
0 → (V → {true, false})

The trust model underlying Advogato does not pro-
vide support for weighted trust relationships in its orig-
inal version. Hence, trust edges extending from indi-
vidual x to y express blind, i.e., full, trust of x in y.
Metrics for PKI maintenance suppose similar models.
Maximum integer network flow computation (Ford and
Fulkerson, 1962) was investigated by Reiter and Stub-
blebine (1997), Reiter and Stubblebine (1996) in order
to make trust metrics more reliable. Levien adopted and
extended this approach for group trust in his Advogato
metric.

Capacities CV : V → N are assigned to every com-
munity member x ∈ V based upon the shortest-path
distance from the seed to x . Hereby, the capacity of
the seed itself is given by the input parameter n men-
tioned before, whereas the capacity of each successive
distance level is equal to the capacity of the previous
level l divided by the average outdegree of trust edges
e ∈ E extending from l. The trust graph obtained hence
contains one single source, which is the set of seed
nodes considered one single “virtual” node, and mul-
tiple sinks, i.e., all nodes other than those defining the
seed. Capacities CV (x) constrain nodes. In order to
apply Ford-Fulkerson maximum integer network flow
(Ford and Fulkerson, 1962), the underlying problem
has to be formulated as single-source/single-sink, hav-
ing capacities CE : E → N constrain edges instead of
nodes. Hence, Algorithm 1 is applied to the old di-
rected graph G = (V, E, CV ), resulting in a new graph
structure G ′ = (V ′, E ′, CE ′ ).

Figure 3 and 4 depicts the outcome of converting
node-constrained single-source/multiple-sink graphs
into single-source/single-sink ones with capacities con-
straining edges.

Conversion is followed by simple integer maximum
network flow computation from the trust seed to the
super-sink. Eventually, trusted agents x are exactly
those peers for which there is flow from “negative”
nodes x− to the super-sink. An additional constraint
needs to be introduced, requiring flow from x− to the
super-sink whenever there is flow from x− to x+. The

function transform (G = (V, E, CV)) {
set E′ ← ∅, V ′ ← ∅;
for all x ∈ V do

add node x+ to V ′;
add node x− to V ′;
if CV(x) ≥ 1 then

add edge (x−, x+) to E′;
set CE′ (x−, x+) ← CV(x) − 1;
for all (x, y) ∈ E do

add edge (x+, y−) to E′;
set CE′ (x+, y−) ← ∞;

end do
add edge (x−, supersink) to E′;
set CE′ (x−, supersink) ← 1;

end if
end do
return G′ = (V ′, E′, CE′ );

}

Algorithm 1. Trust graph conversion.
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latter constraint assures that node x does not only serve
as an intermediate for the flow to pass through, but is
actually added to the list of trusted agents when reached
by network flow. However, the standard implementa-
tion of Ford-Fulkerson traces shortest paths to the sink
first (Ford and Fulkerson, 1962). Therefore, the above
constraint is satisfied implicitly already.

Example 1 (Advogato trust computation). Suppose
the trust graph depicted in Fig. 3 and 4. The only seed
node is a with initial capacity CV (a) = 5. Hence, tak-
ing into account the outdegree of a, nodes at unit dis-
tance from the seed, i.e., nodes b and c, are assigned
capacities CV (b) = 3 and CV (c) = 3, respectively. The
average outdegree of both nodes is 2.5 so that sec-
ond level nodes e and h obtain unit capacity. When
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computing maximum integer network flow, agent a will
accept itself, b, c, e, and h as trustworthy peers.

3.1.2. Attack-resistance properties. Advogato has
been designed with resistance against massive attacks
from malicious agents outside of the community in
mind. Therefore, an upper bound for the number of
“bad” peers chosen by the metric is provided in Levien
and Aiken (2000), along with an informal security
proof to underpin its fitness. Resistance against malev-
olent users trying to break into the community may
already be observed in the example depicted by Fig. 1,
supposing node n to be “bad”: though agent n is trusted
by numerous persons, it is deemed less trustworthy
than, for instance, x . While there are fewer agents trust-
ing x , these agents enjoy higher trust reputation than
the numerous persons trusting n. Hence, it is not just
the number of agents trusting an individual i , but also
the trust reputation of these agents that exerts an impact
on the trust assigned to i . PageRank (Page et al., 1998)
works in a similar fashion and has been claimed to pos-
sess similar properties of attack-resistance like the Ad-
vogato trust metric (Levien, 2003). In order to make the
concept of attack-resistance more tangible, Levien pro-

poses the “bottleneck property” as common feature of
attack-resistant trust metrics. Informally, this property
states that the “trust quantity accorded to an edge s → t
is not significantly affected by changes to the succes-
sors of t” (Levien, 2003). Moreover, attack-resistance
features of various trust metrics are discussed in detail
in Levien and Aiken (1998) and Twigg and Dimmock
(2003).

3.2. Appleseed trust metric
The Appleseed trust metric constitutes the main con-
tribution of this work and is our novel proposal for lo-
cal group trust metrics. In contrast to Advogato, being
inspired by maximum network flow computation, the
basic intuition of Appleseed is motivated by spreading
activation models. Spreading activation models have
first been proposed by Quillian (1968) in order to simu-
late human comprehension through semantic memory.
They are commonly described as “models of retrieval
from long-term memory in which activation subdivides
among paths emanating from an activated mental rep-
resentation” (Smith et al., 2003). By the time of this
writing, the seminal work of Quillian has been ported
to a whole plethora of other disciplines, such as latent
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Fig. 5. Node chains and rank sinks.

semantic indexing (Ceglowski, Coburn and Cuadrado,
2003) and text illustration (Hartmann and Strothotte,
2002). As an example, we will briefly introduce the
spreading activation approach adopted in Ceglowski,
Coburn and Cuadrado (2003) for semantic search in
contextual network graphs in order to then relate Ap-
pleseed to the former work.

3.2.1. Searches in contextual network graphs. The
graph model underlying search strategies in contextual
network graphs is almost identical in structure to the
one presented in Section 2.2.1, i.e., edges (x, y) ∈ E ⊆
V × V connecting nodes x, y ∈ V . Edges are assigned
continuous weights through W : E → [0, 1]. Source
node s to start the search from is activated through
an injection of energy e, which is then propagated to
other nodes along edges according to some set of simple
rules: all energy is fully divided among successor nodes
with respect to their normalized local edge weight, i.e.,
the higher the weight of an edge (x, y) ∈ E , the higher
the portion of energy that flows along that edge. Fur-
thermore, supposing average outdegrees greater than
one, the closer node x to the injection source s, and the
more paths leading from s to x , the higher the amount of
energy flowing into x . To eliminate endless, marginal
and negligible flow, energy streaming into node x must
exceed threshold T in order not to run dry. The de-
scribed approach is captured formally by Algorithm 2,
which propagates energy recursively.

procedure energize (e ∈ R+
0 , s ∈ V) {

energy(s) ← energy(s) + e;
e′ ← e / ∑(s,n)∈E W(s, n);
if e > T then
∀(s, n) ∈ E : energize (e′ · W(s, n), n);

end if
}

Algorithm 2. Recursive energy propagation.

3.2.2. Trust propagation. Algorithm 2 shows the ba-
sic intuition behind spreading activation models. In or-
der to tailor these models to trust computation, later to
become the Appleseed trust metric, serious adaptations
are necessary. For instance, procedure energize(e, s)
registers all energy e that passed through node x , ac-
cumulated in energy(x). Hence, energy(x) represents
the rank of x . Higher values indicate higher node rank.
However, at the same time, all energy contributing to
the rank of x is passed without loss to its successor
nodes. Interpreting energy ranks as trust ranks thus im-
plies numerous issues of semantic consistency as well
as computability. Consider the graph depicted on the
left-hand side of Fig. 5. Applying spreading activation
according to Ceglowski, Coburn and Cuadrado (2003),
trust ranks of nodes b and d will be identical. However,
common sense tells us that d should be accorded less
trust than b, since its shortest-path distance to the trust
seed is higher. Trust decay is commonly agreed upon
(Guha, 2003; Jøsang, Gray, and Kinateder, 2003), for
people tend to trust individuals trusted by immediate
friends more than individuals trusted only by friends of
friends. The right-hand side of Fig. 5 entails even more
serious implications. All energy, or trust, respectively,
distributed along edge (a, b) becomes trapped in a cy-
cle and will never be accorded to any other nodes but
those being part of that cycle, i.e., b, c, and d. These
nodes will eventually acquire infinite trust rank. Obvi-
ously, the bottleneck property (Levien, 2003) does not
hold. Similar issues occur with simplified versions of
PageRank (Page et al., 1998), where cycles accumulat-
ing infinite rank are dubbed “rank sinks”.

3.2.3. Spreading factor. We handle both issues, i.e.,
trust decay in node chains and the elimination of rank
sinks, by tailoring the algorithm to rely upon our global
spreading factor d. Hereby, let in(x) denote the energy
influx into node x . Parameter d then denotes the portion



346 Ziegler and Lausen

0.25

0.7 0.7

1

1
1

c

b

e

f

d

g

a

0.25

0.7

0.7

1

1b

c

a

Fig. 6. Issues with trust normalization.

of energy d · in(x) that the latter node distributes among
successors, while retaining (1 − d) · in(x) for itself.
For instance, suppose d = 0.85 and energy quantity
in(x) = 5.0 flowing into node x . Then, the total energy
distributed to successor nodes amounts to 4.25, while
energy rank energy(x) of x increases by 0.75. Special
treatment is necessary for nodes with zero outdegree.
For simplicity, we assume all nodes to have an outde-
gree of at least one, which makes perfect sense, as will
be shown later.

The spreading factor concept is very intuitive and,
in fact, very close to real models of energy spread-
ing through networks. Observe that the overall amount
of energy in the network, after initial activation in0,
does not change over time. More formally, suppose
that energy(n) = 0 for all n ∈ V before injection in0

into source s. Then the following equation holds in
every computation step of our modified spreading
algorithm, incorporating the concept of spreading fac-
tor d:

∑
x∈V

energy(x) = in0 (1)

Spreading factor d may also be seen as the ratio
between direct trust in x and trust in the ability of x to
recommend others as trustworthy peers. For instance,
Beth, Borcherding and Klein (1994) and Maurer (1996)
explicitly differentiate between direct trust edges and
recommendation edges.

We generally assume d = 0.85, though other val-
ues may also seem reasonable. For instance, having
d ≤ 0.5 allows agents to keep most of the trust they
are granted for themselves and only pass small por-
tions of trust to their peers. Observe that low values
for d favor trust proximity to the source of trust injec-
tion, while high values allow trust to also reach nodes
which are more distant. Furthermore, the introduction

of spreading factor d is crucial for making Appleseed
retain Levien’s bottleneck property, as will be shown
in later sections.

3.2.4. Rank normalization. Algorithm 2 makes use
of edge weight normalization, i.e., the quantity ex→y

of energy distributed along (x, y) from x to successor
node y depends on its relative weight, i.e., W (x, y)
compared to the sum of weights of all outgoing edges
of x :

ex→y = d · in(x) · W (x, y)∑
(x,s)∈E W (x, s)

Normalization is common practice to many trust
metrics, among those PageRank (Page et al., 1998),
EigenTrust (Kamvar, Schlosser and Garcia-Molina,
2003), and AORank (Guha, 2003). However, while nor-
malized reputation or trust seem reasonable for models
with plain, non-weighted edges, serious interferences
occur when edges are weighted, as is the case for our
trust model adopted in Section 2.2.1.

For instance, refer to the left-hand side of Fig. 6 for
unwanted effects: the amounts of energy that node a
accords to successors b and d, i.e., ea→b and ea→d , re-
spectively, are identical in value. Note that b has issued
only one trust statement W (b, c) = 0.25, telling that its
trust in c is rather weak. On the other hand, d assigns
full trust to individuals e, f , and g. Nevertheless, the
overall trust rank for d will be much higher than for
any successor of d, for c is accorded ea→b · d, while e,
f , and g only obtain ea→d · d · 1/3 each. Hence, c will
be trusted three times as much as e, f , and g, which is
not reasonable at all.

3.2.5. Backward trust propagation. The above issue
has already been discussed in Kamvar, Schlosser and
Garcia-Molina (2003), but no solution was proposed
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therein, arguing that “substantially good results” were
achieved despite the drawbacks. We propose to allevi-
ate the problem by making use of backward propaga-
tion of trust to the source: when computing the metric,
additional “virtual” edges (x, s) from every node x ∈
V \ {s} to the trust source s are created. These edges
are assigned full trust W (x, s) = 1. Existing backward
links (x, s), along with their weights, are “overwritten”.
Intuitively, every node is supposed to blindly trust the
trust source s, see Figure 6. The impacts of adding
backward propagation links are threefold:

� Mitigating relative trust. Again, we refer to the
left-hand graph in Figure 6. Trust distribution in
the underlying case becomes much fairer through
backward propagation links, for c now only obtains
ea→b · d · (0.25/(1 + 0.25)) from source s, while e,
f , and g are accorded ea→d · d · (1/4) each. Hence,
trust ranks of both e, f , and g amount to 1.25 times
the trust assigned to c.

� Avoidance of dead ends. Dead ends, i.e., nodes x with
zero outdegree, require special treatment in our com-
putation scheme. Two distinct approaches may be
adopted. First, the portion of incoming trust d · in(x)
supposed to be passed to successor nodes is com-
pletely discarded, which contradicts our constraint of
no energy leaving the system. Second, instead of re-
taining (1 − d) · in(x) of incoming trust, x keeps all
trust for itself. The latter approach is also not sensi-
ble as it encourages users to not issue trust statements
for their peers. Luckily, with backward propagation
of trust, all nodes are implicitly linked to the trust
source s, so that there are no more dead ends to
consider.

� Favoring trust proximity. Backward links to the trust
source s are favorable for nodes close to the source,
as their eventual trust rank will increase. On the other
hand, nodes further away from s are penalized.

Overly rewarding nodes close to the source is not
beyond dispute and may pose some issues. In fact, it
represents the tradeoff we have to pay for both welcome
aspects of backward propagation.

3.2.6. Nonlinear trust normalization. In addition to
backward propagation, an integral part of Appleseed,
we propose supplementary measures to decrease the
negative impact of trust distribution based on relative
weights. Situations where nodes y with poor ratings
from x are awarded high overall trust ranks, thanks to

the low outdegree of x , have to be avoided. Taking the
squares of local trust weights provides an appropriate
solution:

ex→y = d · in(x) · W (x, y)2∑
(x,s)∈E W (x, s)2

As an example, refer to node b in Figure 6. With
squared normalization, the total amount of energy
flowing backward to source a increases, while the
amount of energy flowing to the poorly trusted node
c decreases significantly. Accorded trust quantities
eb→a and eb→c amount to d · in(b) · (1/1.0625) and
d · in(b) · (0.0625/1.0625), respectively. More serious
penalization of poor trust ratings can be achieved by
selecting powers above two.

3.2.7. Algorithm outline. Having identified modifi-
cations to apply to spreading activation models in or-
der to tailor them for local group trust metrics, we are
now able to formulate the core algorithm of Appleseed.
Input and output are characterized as follows:

TrustA : V × R
+
0 × [0, 1] × R

+ → (trust : V → R
+
0 )

The first input parameter specifies trust seed s,
the second trust injection e, parameter three identifies
spreading factor d ∈ [0, 1], and the fourth argument
binds accuracy threshold Tc, which serves as one of two
convergence criteria. Similar to Advogato, the output is
an assignment function of trust with domain V . How-
ever, Appleseed allows rankings of agents with respect
to the trust accorded. Advogato, on the other hand, only
assigns boolean values indicating presence or absence
of trust.

Appleseed works with partial trust graph informa-
tion. Nodes are accessed only when needed, i.e., when
reached by energy flow. Trust ranks trust(x), which cor-
respond to energy(x) in Algorithm 2, are initialized to
0. Any unknown node u hence obtains trust(u) = 0.
Likewise, virtual trust edges for backward propagation
from node x to the source are added at the moment that
x is discovered. In every iteration, for those nodes x
reached by flow, the amount of incoming trust is com-
puted as follows:

in(x) = d ·
∑

(p,x)∈E

(
in(p) · W (p, x)∑

(p,s)∈E W (p, s)

)

Incoming flow for x is hence determined by all flow
that predecessors p distribute along edges (p, x). Note
that the above equation makes use of linear normaliza-
tion of relative trust weights. Replacement of linear by



348 Ziegler and Lausen

nonlinear normalization according to Section 3.2.6 is
straight-forward, though. The trust rank of x is updated
as follows:

trust(x) ← trust(x) + (1 − d) · in(x)

However, trust networks generally contain cycles
and thus allow no topological sorting of nodes. Hence,
the computation of in(x) for reachable x ∈ V is in-
herently recursive. Several iterations for all nodes are
required in order to make computed information con-
verge towards the least fixpoint. We give a criterion
that has to be satisfied for convergence, relying upon
accuracy threshold Tc briefly introduced before.

Definition 1 (Termination). Suppose that Vi ⊆ V rep-
resents the set of nodes that were discovered until step i ,
and trusti (x) the current trust ranks for all x ∈ V . Then
the algorithm terminates when the following condition
is satisfied after step i :

∀x ∈ Vi : trusti (x) − trusti−1(x) ≤ Tc (2)

Informally, Appleseed terminates when changes of
trust ranks with respect to the prior iteration i − 1 are
not greater than accuracy threshold Tc.

Moreover, when supposing spreading factor d > 0,
accuracy threshold Tc > 0, and trust source s part of
some connected component G ′ ⊆ G containing at least
two nodes, convergence, and thus termination, is guar-
anteed. The following paragraph gives an informal
proof:
Proof (Convergence of Appleseed): Assume that fi

denotes step i’s quantity of energy flowing through the
network, i.e., all the trust that has not been captured by
some node x through function trusti (x). It follows from
Equation (1) that in0 constitutes the upper boundary of
trust energy floating through the network, and fi can
be computed as below:

fi = in0 −
∑
x∈V

trusti (x)

Since d > 0 and ∃(s, x) ∈ E, x �= s, the sum
of current trust ranks trusti (x) of all x ∈ V is
strictly increasing for increasing i . Consequently,
limi→∞ fi = 0 holds. Moreover, since termination is
defined by some fixed accuracy threshold Tc > 0,
there exists some step k such that limi→k fi ≤ Tc.

�

3.3. Comparison of advogato and appleseed
Both Advogato and Appleseed are implementations of
local group trust metrics. Advogato has already proven
its efficiency in practical usage scenarios such as the
Advogato online community, though lacking quantita-
tive fitness information. Its success is mainly measured
by indirect feedback, such as the amount of spam mes-
sages posted on Advogato, which has been claimed
to be rather low. In order to evaluate the fitness of
Appleseed as an appropriate approach to group trust
computation, we intend to relate our novel approach to
Advogato for comparison:

� Attack-resistance. This property defines the behavior
of trust metrics in case of malicious nodes trying to
invade into the system. For the evaluation of attack-
resistance capabilities, we have briefly introduced the
“bottleneck property” in Section 3.1.2, which holds
for Advogato. In order to recapitulate, suppose that
s and t are nodes and connected through trust edge
(s, t). Node s is assumed good, while t is an attack-
ing agent trying to make good nodes trust malev-
olent ones. In case the bottleneck property holds,
manipulation “on the part of bad nodes does not
affect the trust value” (Levien, 2003). Clearly, Ap-
pleseed satisfies the bottleneck property, for nodes
cannot raise their impact by modifying the struc-
ture of trust statements they issue. Bear in mind
that the amount of trust accorded to agent t only
depends on its predecessors and does not increase
when t adds more nodes. Both spreading factor d
and normalization of trust statements ensure that
Appleseed becomes equally as attack-resistant as
Advogato.

� Trust weight normalization. We have indicated be-
fore that issuing multiple trust statements dilutes trust
accorded to successors. According to Guha (2003),
this does not comply with real world observations,
where statements of trust “do not decrease in value
when the user trusts one more person [ . . . ]”. The
malady that Appleseed suffers from is common to
many trust metrics, notably those based upon find-
ing principal eigenvectors (Page et al., 1998; Kam-
var, Schlosser and Garcia-Molina, 2003; Richardson,
Agrawal and Domingos, 2003). On the other hand,
the approach pursued by Advogato does not penalize
trust relationships asserted by eager trust dispensers,
for node capacities do not depend on local informa-
tion. Remember that capacities of nodes pertaining
to level l are assigned based on the capacity of level
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l − 1 as well as the overall outdegree of nodes part
of this level. Hence, Advogato encourages agents is-
suing numerous trust statements, while Appleseed
penalizes overly abundant trust certificates.

� Deterministic trust computation. Appleseed is de-
terministic with respect to the assignment of trust
rank to agents. Hence, for any arbitrary trust graph
G = (V, E, W ) and for every node x ∈ V , linear
equations allow to characterize the amount of trust
assigned to x , as well as the quantity that x accords
to its successor nodes. Advogato, however, is non-
deterministic. Though the number of trusted agents,
and therefore the computed maximum flow size, is
determined for given input parameters, the set of
agents itself is not. Changing the order in which trust
assertions are issued may yield different results. For
example, suppose CV (s) = 1 holds for trust seed s.
Furthermore, assume s has issued trust certificates
for two agents, b and c. The actual choice between
b or c as trustworthy peer with maximum flow only
depends on the order in which nodes are accessed.

� Model and output type. Basically, Advogato sup-
ports non-weighted trust statements only. Appleseed
is more versatile by virtue of its trust model based
on weighted trust certificates. In addition, Advogato
returns one set of trusted peers, whereas Appleseed
assigns ranks to agents. These ranks allow to select
most trustworthy agents first and relate them to each
other with respect to their accorded rank. Hereby, the
definition of thresholds for trustworthiness is left to
the user who can thus tailor relevant parameters to fit
different application scenarios. For instance, raising
the application-dependent threshold for the selection
of trustworthy peers, which may be either an abso-
lute or relative value, allows for enlarging the neigh-
borhood of trusted peers. Appleseed is hence more
adaptive and flexible than Advogato.

3.4. Parameterization and experiments
Appleseed allows numerous parameterizations of its
input variables. Discussions of parameter instantia-
tions and caveats thus constitute indispensable com-
plements to our contribution. Moreover, we provide
experimental results exposing observed effects of pa-
rameter tuning. Note that all experiments have been
conducted on data obtained from “real” social net-
works: several web crawling tools were written to
mine the Advogato community web site and extract
trust assertions stated by its more than 8,000 mem-
bers. Hereafter, we converted all trust data to our trust

model proposed in Section 2.2.1. Notice that the Ad-
vogato community server supports four different levels
of peer certification, namely “Observer”, “Apprentice”,
“Journeyer”, and “Master”. We mapped these quali-
tative certification levels to quantitative ones, assign-
ing W (x, y) = 0.25 for x certifying y as “Observer”,
W (x, y) = 0.5 for an “Apprentice”, and so forth. The
Advogato community grows rapidly and our crawler
extracted 3, 224, 101 trust assertions. Heavy prepro-
cessing and data cleansing was inevitable, eliminat-
ing reflexive trust statements W (x, x) and shrinking
trust certificates to reasonable sizes. Note that some ea-
ger Advogato members issued more than two thousand
trust statements, yielding an overall average outdegree
of 397.69 assertions per node. Common sense tell us
that this figure is beyond dispute. Applying our set of
extraction tools, we tailored the test data obtained from
Advogato to our needs and extracted trust networks
with specific average outdegree for the experimental
analysis.

3.4.1. Trust injection. Trust values trust(x) com-
puted by the Appleseed metric for source s and node
x may differ greatly from explicitly assigned trust
weights W (s, x). We have already mentioned before
that computed trust ranks may not be interpreted as
absolute values, but rather in comparison with ranks
assigned to all other peers. In order to make assigned
rank values more tangible, though, one might expect
that tuning the trust injection in0 to satisfy the follow-
ing proposition will align computed ranks and explicit
trust statements:

∀(s, x) ∈ E : trust(x) ∈ [W (s, x) − ε, W (s, x) + ε]

However, when assuming reasonably small ε, the
approach does not succeed. Recall that computed trust
values of successor nodes x to s do not only depend
on assertions made by s, but also on trust ratings as-
serted by other peers. Hence, perfect alignment of ex-
plicit trust ratings with computed ones cannot be ac-
complished. However, we propose alignment heuris-
tics, incorporated into Algorithm 4, which have proven
to work remarkably well in diverse test scenarios. The
basic idea is to add another node i and edge (s, i) with
W (s, i) = 1 to the trust graph G = (V, E, W ), treat-
ing (s, i) as an indicator to tell whether trust injection
in0 is “good” or not. Consequently, parameter in0 has
to be adapted in order to make trust(i) converge to-
wards W (s, i). The trust metric computation is hence
repeated with different values for in0 until convergence
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function TrustA (s ∈ V, in0 ∈ R+
0 , d ∈ [0, 1], Tc ∈ R+) {

set in0(s) ← in0, trust0(s) ← 0, i ← 0;
set V0 ← {s};
repeat

set i ← i + 1;
set Vi ← Vi−1;
∀x ∈ Vi−1 : set ini(x) ← 0;
for all x ∈ Vi−1 do

set trusti(x) ← trusti−1(x) + (1 − d) · ini−1(x);
for all (x, u) ∈ E do

if u /∈ Vi then
set Vi ← Vi ∪ {u};
set trusti(u) ← 0, ini(u) ← 0;
add edge (u, s), set W(u, s) ← 1;

end if
set w ← W(x, u) / ∑(x,u′)∈E W(x, u′);
set ini(u) ← ini(u) + d · ini−1(x) · w;

end do
end do
set m = maxy∈Vi{trusti(y) − trusti−1(y)};

until (m ≤ Tc)
return (trust : {(x, trusti(x)) | x ∈ Vi});

}

Algorithm 3. Appleseed trust metric.

function Trustheu (s ∈ V, d ∈ [0, 1], Tc ∈ R+) {
add node i, edge (s, i), set W(s, i) ← 1;
set in0 ← 20, ε ← 0.1;
repeat

set trust ← TrustA (s, in0, d, Tc);
in0 ← adapt (W(s, i), trust(i), in0);

until trust(i) ∈ [W(s, i) − ε, W(s, i) + ε]
remove node i, remove edge (s, i);
return TrustA (s, in0, d, Tc);

}

Algorithm 4. Adding weight alignment heuristics.

of explicit and computed trust value for i is achieved.
Eventually, edge (s, i) and node i are removed and the
metric computation is performed one more time. Exper-
iments have shown that our imperfect alignment heuris-
tics yield computed ranks trust(x) for direct successors
x of trust source s which come close to previously spec-
ified trust statements W (s, x).

3.4.2. Spreading factor. Small values for d tend to
overly reward nodes close to the trust source and pe-
nalize remote ones. Recall that low d allows nodes to
retain most of the incoming trust quantity for them-
selves, while large d stresses the recommendation of
trusted individuals and makes nodes distribute most of
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Fig. 7. Linear and nonlinear normalization.

the assigned trust to their successor nodes:

Experiment 1 (Impact of parameter d). We compare
distributions of computed rank values for three di-
verse instantiations of d, namely d1 = 0.1, d2 = 0.5,
and d3 = 0.85. Our setup is based upon a social net-
work with an average outdegree of six trust assignments
and 384 nodes reached by trust energy spreading from
our designated trust source. We furthermore suppose
in0 = 200, Tc = 0.01, and linear weight normalization.
Computed ranks are classified into 11 histogram cells
with nonlinear cell width. Obtained output results are
displayed in Fig. 8. Mind that we have chosen loga-
rithmic scales for the vertical axis in order to render
the diagram more legible. For d1, we observe that this
value engenders the highest amount of nodes x with
ranks trust(x) ≥ 25. On the other hand, virtually no
ranks ranging from 0.2 to 1 are assigned, while the
number of nodes with ranks smaller than 0.05 is again
much higher for d1 than for both d2 and d3. Instanti-
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ation d3 = 0.85 constitutes the counterpart of d1. No
ranks with trust(x) ≥ 25 are accorded, while interim
ranks between 0.1 and 10 are much more likely for d3

than for both other instantiations of spreading factor
d. Consequently, the number of ranks below 0.05 is
lowest for d3.

The experiment demonstrates that high values for
parameter d tend to distribute trust more evenly, neither
overly rewarding nodes close to the source, nor penal-
izing remote ones too rigidly. On the other hand, low
d assigns high trust ranks to very few nodes, namely
those which are closest to the source, while the major-
ity of nodes obtains very low trust rank. We propose to
set d = 0.85 for general use.

3.4.3. Accuracy and convergence rate. We already
mentioned before that the Appleseed algorithm is in-
herently recursive. Parameter Tc constitues the ultimate
criterion for termination. We will show through an
experiment that convergence is reached very fast, no
matter how huge the number of nodes trust is flow-
ing through, and no matter how large the initial trust
injection.

Experiment 2 (Convergence rate). The trust network
we consider has an average outdegree of five trust as-
signments per node. The number of nodes for which
trust ranks are assigned amounts to 572. We sup-
pose d = 0.85, Tc = 0.01, and linear weight normal-
ization. Two runs are computed, one with trust activa-
tion in1 = 200, the other with initial energy in2 = 800.
Fig. 9 demonstrates the rapid convergence of both runs.
Though the trust injection for the second run is four
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Fig. 9. Convergence of Appleseed.

times as high as for the first, convergence is reached in
only few more iterations: run one takes 38 iterations,
run two terminates after 45 steps.

For both runs, we assumed accuracy threshold Tc =
0.01, which is extremely small and accurate beyond
necessity already. However, experience taught us that
convergence takes place rapidly even for very large net-
works and high amounts of trust injected, so that assum-
ing the latter value for Tc imposes no scalability issues.
In fact, the amount of nodes taken into account for trust
rank assignment in the above example well exceeds
practical usage scenarios: mind that the case at hand
demands 572 documents to be fetched from the Web,
complaisantly supposing that these pages containing
personal trust information for each node are cached af-
ter their first access. Hence, we may well claim that
the actual bottleneck of group trust computation is not
the Appleseed metric itself, but downloads of trust re-
sources from the network. This bottleneck might also
be the reason for selecting thresholds Tc greater than
0.01, in order to make the algorithm terminate after
fewer node accesses.

3.5. Implementation and extensions
Appleseed was implemented in JAVA, based upon
Algorithm 3. We applied moderate fine-tuning and sup-
plemented our metric with an architectural cushion in
order to access “real” machine-readable RDF home-
pages. Other notable modifications to the core algo-
rithm are discussed briefly:

� Maximum number of nodes. We supplemented the
set of input parameters by yet another argument
M , which specifies the maximum number of nodes
to unfold. This extension hinders trust energy from
overly covering vast parts of the entire network. Note
that accessing the personal, machine-readable home-
pages, which contain trust information required for
the metric computation, represents the actual com-
putation bottleneck. Hence, expanding as few nodes
as possible is highly desirable. When choosing rea-
sonably large M , for instance, twice the number of
agents assumed trustworthy, we may expect to not
miss any relevant nodes: mind that Appleseed pro-
ceeds breadth-first and thus considers close nodes
first, which are more eligible for trust than distant
ones.

� Upper-bounded trust path lengths. Another approach
to sensibly restrict the number of nodes unfolded
relies upon upper-bounded path lengths. The idea
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of constraining path lengths for trust computation
has been adopted before by Reiter and Stubblebine
(1996) and within the X.509 protocol (Housely et al.,
1999). Depending on the overall trust network con-
nectivity, we opt for maximum path lengths between
three and six, well aware of Milgram’s “six degress of
separation” paradigm (Milgram, 1992). In fact, trust
decay is inherent to Appleseed, thanks to spread-
ing factor d and backward propagation. Stripping
nodes at large distances from the seed therefore only
marginally affects the trust metric computation re-
sults while providing major speed-ups at the same
time.

� Zero trust retention for the source. Third, we modi-
fied Appleseed to hinder trust source s from accumu-
lating trust energy, essentially introducing one novel
spreading factor ds = 1.0 for the seed only. Conse-
quently, all trust is divided among peers of s and
none retained, which is reasonable. Remember that
s wants to discover trustworthy agents and not as-
sign trust rank to itself. Convergence may acceler-
ate, since trusti+1(x) − trusti (x) used to be maximal
for seed node s, thanks to backward propagation of
trust. Furthermore, supposing the same trust quantity
in0 injected, assigned trust ranks become greater in
value, also enlarging gaps between neighbors in trust
rank.

3.6. Testbed for local group trust metrics
Trust metrics and models for trust propagation have to
be intuitive, underpinning the need for the application
of Occam’s Razor. Humans must be able to com-
prehend why agent a was accorded higher trust rank
than b and come to similar results when asked for a
personal judgement. Consequently, we implemented
our own testbed, which visually displays social net-
works, allows zooming of specific nodes and layouts
these appropriately, with minimum overlap. We made
use of the yFiles (Wiese, Eiglsperger and Kaufmann,
2001) library to perform all sophisticated graph draw-
ing. Moreover, our testbed permits to parameterize Ap-
pleseed through dialogs. Detailed output is provided,
both graphical and textual. Graphical results comprise
the highlighting of nodes with trust ranks above cer-
tain thresholds, while textual results return quantita-
tive trust ranks of all accessed nodes, numbers of it-
erations, and so forth. We also implemented the Ad-
vogato trust metric and incorporated the latter into our
testbed. Hereby, our implementation of Advogato does
not require a priori complete trust graph information,

but accesses nodes “just in time”, similar to Appleseed.
All experiments were conducted on top of the testbed
application.

4. Distrust

Distrust is one of the most controversial topics and is-
sues to cope with, especially when considering trust
metrics and trust propagation. Most approaches com-
pletely ignore distrust and only consider full trust or
degrees of trust (Levien and Aiken, 1998; Mui, Mo-
htashemi and Halberstadt, 2002; Beth, Borcherding
and Klein, 1994; Maurer, 1996; Reiter and Stubblebine,
1996; Richardson, Agrawal and Domingos, 2003).
Others, among those (Abdul-Rahman and Hailes,
1997; Chen and Yeager, 2003; Aberer and Despotovic,
2001; Golbeck, Parsia and Hendler, 2003), allow for
distrust ratings, though, but do not consider the subtle
semantic differences pertaining to the distinct notions
of trust and distrust. Consequently, according to Gans
et al. (2001), “distrust is regarded as just the other side
of the coin, that is, there is generally a symmetric scale
with complete trust on one end and absolute distrust
on the other.” Furthermore, some researchers equate
the notion of distrust with lack of trust information.
Contrarily, in his seminal work on the essence of trust,
Marsh (1994a) has already pointed out that those two
concepts, i.e., lack of trust and distrust, may not be
intermingled. For instance, in absence of trustworthy
agents, we might be more prone to accept recommen-
dations from persons we do not trust, probably because
of lack of prior experiences Marsh (1994a), than from
persons we explicitly distrust, resulting from past bad
experiences or deceit. However, even Marsh pays little
attention to the specifics of distrust.

Gans et al. (2001) were among the first to recog-
nize the importance of distrust, stressing the fact that
“distrust is an irreducible phenomenon that cannot be
offset against any other social mechanisms”, hence in-
cluding trust. In their work (Gans et al., 2001), an ex-
plicit distinction between confidence, trust, and distrust
is made. Moreover, the authors indicate that distrust
might be highly relevant to social networks. Its im-
pact is not inherently negative, but may also influence
the network in an extremely positive fashion. However,
the primary focus of the latter work is on methodol-
ogy issues and planning, not considering trust asser-
tion evaluations and propagation through appropriate
metrics.
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Guha (2003), Guha, Raghavan, and Tomkins (2004)
eventually acknowledges the immense role of distrust
with respect to trust propagation applications, arguing
that “distrust statements are very useful for users to
debug their Web of Trust”. For example, suppose that
agent a blindly trusts b, which again blindly trusts c,
which blindly trusts d . However, a completely distrusts
d. The latter distrust statement hence ensures that a
will not accept beliefs and ratings from d , regardless
of agent a trusting b trusting c trusting d .

4.1. Semantics of distrust
The non-symmetrical nature of distrust and trust, be-
ing two perfect dichotomies, has already been recog-
nized by recent sociological research (Lewicki, McAl-
listerand and Bies, 1998). In this section, we investigate
the differences between distrust and trust pertaining to
possible inferences and the propagation of statements.

4.1.1. Distrust as negated trust. Interpreting distrust
as negation of trust was adopted by many trust met-
rics, among those trust metrics proposed in Abdul-
Rahman and Hailes (1997), Jøsang, Gray, and Kinat-
eder (2003), Abdul-Rahman and Hailes (2000), and
Chen and Yeager (2003). Basically, these metrics com-
pute trust values by analyzing chains of trust statements
from source s to target t , eventually merging them to
obtain an aggregate value. Each chain hereby becomes
synthesized into one single number through weighted
multiplication of trust values along trust paths. Se-
rious implications resulting from assuming that trust
concatenation relates to multiplication (Richardson,
Agrawal and Domingos, 2003), and distrust to negated
trust, manifest when agent a distrusts b, which
distrusts c:

¬ trust(a, b) ∧ ¬ trust(b, c) |= trust(a, c)

Jøsang, Gray, and Kinateder (2003) are well aware
of this rather unwanted effect but do not deny its cor-
rectness, for the enemy of your enemy could well be
your friend. Guha, on the other hand, indicates that two
distrust statements cancelling out each other most of-
ten does not reflect desired behavior (Guha, 2003). We
adopt the opinion of Guha and claim that distrust may
not be interpreted as negated trust.

4.1.2. Propagation of distrust. The “conditional
transitivity” (Abdul-Rahman and Hailes, 1997) of trust
is commonly agreed upon and constitutes the founda-
tion and pivotal premiss that all trust metrics rely upon.

However, no consensus in literature has been achieved
as it comes to the degree of transitivity and the decay
rate of trust. Many approaches therefore explicitly dis-
tinguish between recommendation trust and direct trust
(Jøsang, Gray, and Kinateder, 2003; Abdul-Rahman
and Hailes, 1997; Maurer, 1996; Beth, Borcherding
and Klein, 1994; Chen and Yeager, 2003) in order to
keep apart the transitive fraction of trust from the non-
transitive one. Hence, in these works, only the ultimate
edge within the trust chain, i.e., the one linking to the
trust target, needs to be direct, while all others are sup-
posed to be recommendations. For the Appleseed trust
metric, this distinction is made through the introduc-
tion of the global spreading factor d. However, the con-
ditional transitivity property of trust does not equally
extend to distrust. The case of double negation through
distrust propagation has already been considered. Now
suppose, for instance, that a distrusts b, which trusts c.
Supposing distrust to propagate through the network,
we may come to make the following inference:

distrust(a, b) ∧ trust(b, c) |= distrust(a, c)

This inference is more than questionable, for a pe-
nalizes c simply for being trusted by an agent that a
distrusts. Obviously, this assumption is not sound and
does not reflect expected real-world behavior. We as-
sume that distrust does not allow to make direct infer-
ences of any kind. This conservative assumption makes
us stay on the “safe” side and is in perfect accordance
with (Guha, 2003).

4.2. Incorporating distrust into appleseed
We compare our implementation of distrust with
Guha’s approach, who supposes an identical model of
distrust. Guha computes trust by means of one global
group trust metric, similar to PageRank (Page et al.,
1998). For distrust, he proposes two candidate ap-
proaches. The first one directly integrates distrust into
the iterative eigenvector computation and comes up
with one single measure combining both trust and dis-
trust. However, in networks dominated by distrust, the
iteration might not converge. The second proposal first
computes trust ranks by trying to find the dominant
eigenvector, and then computes separate distrust ranks
in one single step, based upon the iterative computation
of trust ranks. Suppose that Da is the set of agents who
distrust a:

DistrustRank(a) =
∑

b∈Da
TrustRank(b)

|Da|
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The problem we perceive with this approach refers
to superimposing the computation of distrust ranks
after trust rank computation, which may yield some
strange behavior: suppose an agent a which is highly
controversial by engendering ambiguous sentiments,
i.e., on the one hand, there are numerous agents that
trust a, and on the other hand, there are numerous agents
which distrust a. With the approach proposed by Guha,
a’s impact through asserting distrust into other agents
is huge, resulting from its immense positive trust rank.
However, common sense tells us this should not be the
case, for a is subject to tremendous distrust itself, thus
levelling out its high trust rank.

Hence, for our own approach, we intend to directly
incorporate distrust into the iterative process of the Ap-
pleseed trust metric computation, and not superimpose
distrust afterwards. Several pitfalls have to be avoided,
such as the risk of non-convergence in case of networks
dominated by distrust (Guha, 2003). Furthermore, in
absence of distrust statements, we want the distrust-
enhanced Appleseed algorithm, which we denote by
TrustA− , to yield results identical to those engendered
by the original version TrustA.

4.2.1. Normalization and distrust. First, the trust
normalization procedure has to be adapted. We hereby
suppose the more general case which does not neces-
sarily assume linear normalization but normalization
of weights to the power of q , as has been discussed
in Section 3.2.6. Let in(x), the trust influx for agent x ,
be positive. As usual, we denote the global spreading
factor by d, and quantified trust statements from x
towards y by W (x, y). Function sign(x) returns the
sign of value x . Note that from now on, we assume
W : E → [−1, +1], for degrees of distrust need to be
expressed as well. Then the trust quantity ex→y dis-
tributed from x to successor node y is computed as
follows:

ex→y = d · in(x) · sign(W (x, y)) · w, (3)

where

w = |W (x, y)|q∑
(x,s)∈E |W (x, s)|q

The accorded quantity ex→y becomes negative if
W (x, y) is negative, i.e., if x distrusts y to a certain
extent. For the relative weighting, the absolute values
|W (x, s)| of all weights are considered. Otherwise, the
denominator could become negative, or positive trust
statements could become boosted unduly. The latter

0.25

0.75

1

- 0.5

0.25

0.75

0.75

- 0.25 
n

a

m
b

de

c f

g

Fig. 10. Network augmented by distrust.

would be the case if the sum of positive trust ratings
slightly outweighed the sum of negative ones, making
the denominator converge towards zero. An example
demonstrates the computation process:

Example 2 (Distribution of Trust and Distrust). We
assume the trust network as depicted in Fig. 10. Let
the trust energy influx into node a be in(a) = 2, and
global spreading factor d = 0.85. For simplicity rea-
sons, backward propagation of trust to the source is not
considered. Moreover, we suppose linear weight nor-
malization, thus q = 1. Consequently, the denomina-
tor of the normalization equation is |0.75| + | − 0.5| +
|0.25| + |1| = 2.5. The trust energy that a distributes
to b hence amounts to ea→b = 0.51, whereas the en-
ergy accorded to the distrusted node c is ea→c = −0.34.
Furthermore, we have ea→d = 0.17 and ea→e = 0.68.

Observe that trust energy becomes lost during distri-
bution, for the sum of energy accorded along outgoing
edges of a amounts to 1.02, while 1.7 was provided for
distribution. The effect results from the negative trust
weight W (a, c) = −0.5.

4.2.2. Distrust allocation and propagation. We now
analyze the case where the influx in(x) for agent x
is negative. In this case, the trust allocated for x will
also be negative, i.e., in(x) · (1 − d) < 0. Moreover, the
energy in(x) · d that x may distribute among its suc-
cessor nodes will naturally be negative as well. The
implications are those which have been mentioned in
Section 4.1, i.e., distrust as negation of trust and prop-
agation of distrust. For the first case, refer to node f
in Figure 10 and assume in(c) = −0.34, which is de-
rived from Example 2. The trusted agent a distrusts c
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which distrusts f . Eventually, f would be accorded
d · (−0.34) · (−0.25), which is positive. For the sec-
ond case, node g would be assigned a negative trust
quantity d · (−0.34) · (0.75), simply for being trusted
by f , which is commonly distrusted. Both unwanted
effects can be avoided by not allowing distrusted nodes
to distribute any energy at all. Hence, more formally,
we introduce a novel function out(x):

out(x) =
{

d · in(x), if in(x) ≥ 0
0, else

(4)

The function then has to replace d · in(x) when com-
puting the energy distributed along edges from x to
successor nodes y:

ex→y = out(x) · sign(W (x, y)) · w, (5)

where

w = |W (x, y)|q∑
(x,s)∈E |W (x, s)|q

This design decision perfectly aligns with our as-
sumptions made in Section 4.1 and prevents the in-
ference of unwanted side-effects mentioned before.
Furthermore, one can see easily that the modifications
introduced do not change the behavior with respect to
Algorithm 3 when not considering relationships of dis-
trust.

4.2.3. Convergence. Even in networks largely or en-
tirely dominated by distrust, our enhanced version of
Appleseed is guaranteed to converge. We therefore
briefly outline an informal proof, knowing about the
convergence of the core Appleseed algorithm, which
has been shown before by Proof 1:
Proof 2 (Convergence in presence of distrust): Re-
call that only positive trust influx in(x) becomes prop-
agated, which has been indicated in Section 4.2.2.
Hence, all we need to show is that the overall quan-
tity of positive trust distributed in computation step
i cannot be augmented through the presence of dis-
trust statements. In other words, suppose that G =
(V, E, W ) defines an arbitrary trust graph, contain-
ing quantified trust statements, but no distrust, i.e.,
W : E → [0, 1]. Now consider another trust graph
G ′ = (V, E ∪ D, W ′) which contains additional edges
D, and weight function W ′ = W ∪ (D → [−1, 0[).
Hence, G ′ augments G by additional distrust edges
between nodes taken from V . We now perform two
parallel computations with enhanced Appleseed, one
operating on G and the other on G ′. In every step,

and for every trust edge (x, y) ∈ E for G, the dis-
tributed energy ex→y is greater or equal than for its
equivalent counterpart on G ′, for the denominator of
the fraction given in Eq. (5) can only become greater
through additional distrust outedges. Second, for the
computation performed on G ′, negative energy dis-
tributed along edge (x, y) can only reduce the trust in-
flux for y and may hence even accelerate convergence.

�
However, as one might already have observed from

the proof, there exists one serious implication arising
from having distrust statements in the network. The
overall accorded trust quantity does not equal the ini-
tially injected energy anymore. Moreover, in networks
dominated by distrust, the overall trust energy sum may
even be negative.

Experiment 3 (Network impact of distrust). We in-
tend to analyze the number of iterations until conver-
gence and the overall accorded trust rank of five net-
works. The structures of all these graphs are identical,
being composed of 623 nodes with an average inde-
gree and outdegree of 9. The only difference applies to
the assigned weights, where the first graph contains no
distrust statements at all, while 25% of all weights are
negative for the second, 50% for the third, and 75% for
the fourth. The fifth graph only contains distrust state-
ments. Appleseed parameters are identical for all five
runs, having backward propagation enabled, an initial
trust injection in0 = 200, spreading factor d = 0.85,
convergence threshold Tc = 0.01, linear weight nor-
malization, and no upper bound on the number of
nodes to unfold. The left-hand side of Figure 11 clearly
demonstrates that the number of iterations until con-
vergence, given on the vertical axis, decreases with
the proportion of distrust increasing, observable along
the horizontal axis. Likewise, the overall accorded trust
rank, indicated on the vertical axis of the right-hand side
of Figure 11, decreases rapidly with increasing distrust,
eventually dropping below zero. The same experiment
was repeated for another network with 329 nodes, an
average indegree and outdegree of 6, yielding similar
results.

The effects observable in Experiment 3 only
marginally affect the ranking itself, for trust ranks are
interpreted relative to each other. Moreover, compen-
sation for lost trust energy may be achieved by boosting
the initial trust injection in0.
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Fig. 11. Network impact of distrust.

5. Discussion

In this work, we have introduced various axes to clas-
sify trust metrics with respect to diverse criteria and
features. Furthermore, we have advocated the need
for local group trust metrics, eventually presenting
Appleseed, our main contribution made. Through our
proposed trust model, we have situated Appleseed
within the Semantic Web universe. However, we be-
lieve that Appleseed suits other application scenarios
likewise, such as group trust in online communities,
open rating systems, ad-hoc and peer-to-peer networks.

For instance, Appleseed could support peer-to-peer-
based file-sharing systems in reducing the spread of
self-replicating inauthentic files by virtue of trust prop-
agation (Kamvar, Schlosser and Garcia-Molina, 2003).
In that case, explicit trust statements, resulting from di-
rect interaction, reflect belief in someone’s endeavor to
provide authentic files.

Moreover, we have provided ample discussions of
semantics and propagation models of distrust, owing to
the fact that the latter concept has remained rather unat-
tended by research. Details of its incorporation into the
core Appleseed framework have also been provided.

However, several open issues for future research re-
main. Though having described ranking mechanisms
and ways to align direct and indirect, i.e., computed,
trust relationships by means of heuristics, an actual
policy for eventual boolean decision-taking with re-
spect to which agents to grant trust and which to deny
has not been considered. Note that possible criteria are
application-dependent. For some, one might want to se-

lect the n most trustworthy agents. For others, all agents
with ranks above given thresholds may be eligible.

We strongly believe that local group trust metrics,
such as Advogato and Appleseed, will become subject
to substantial research for diverse computing domains
within the near future. For instance, the Appleseed core
currently undergoes integration into our decentralized,
Semantic Web-based recommender system (Ziegler,
2004; Ziegler and Lausen, 2004), playing an essential
role in its overall conception.

At any rate, success or failure of Appleseed, Ad-
vogato, and other group trust metrics largely depend
on the leverage that candidate application scenarios are
able to unfold.
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Notes

1. Recall the definition of trust given before, telling that trust is a
“subjective expectation”.

2. Mind that in this context, “local” refers to the place of computa-
tion and not network perspective.

3. Supposing identical parameterizations for the metrics in use, as
well as similar network structures.

4. Though various levels of peer certification exist, their proposed
interpretation does not correspond to weighted trust relationships.

5. With respect to seed node a.
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6. The terms “energy” and “trust” are used interchangeably in this
context.

7. By relying on predicate calculus expressions, we greatly simplify
through supposing that trust, and hence distrust, is fully transitive.
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