
https://doi.org/10.1007/s00145-020-09360-1
J Cryptol (2020) 33:1914–1983

A Formal Security Analysis of the Signal Messaging
Protocol

Katriel Cohn-Gordon
Oxford, UK

me@katriel.co.uk

Cas Cremers
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

cremers@cispa.saarland

Benjamin Dowling
ETH Zürich, Zurich, Switzerland
benjamin.dowling@inf.ethz.ch

Luke Garratt
Cisco Systems, San Jose, USA

lgarratt@cisco.com

Douglas Stebila
University of Waterloo, Waterloo, Canada

dstebila@uwaterloo.ca

Communicated by Hugo Krawczyk

Received 8 November 2017 / Revised 4 June 2020
Online publication 23 September 2020

Abstract. The Signal protocol is a cryptographic messaging protocol that provides
end-to-end encryption for instantmessaging inWhatsApp,Wire, and FacebookMessen-
ger among many others, serving well over 1 billion active users. Signal includes several
uncommon security properties (such as “future secrecy” or “post-compromise secu-
rity”), enabled by a technique called ratcheting in which session keys are updated with
every message sent. We conduct a formal security analysis of Signal’s initial extended
triple Diffie–Hellman (X3DH) key agreement and Double Ratchet protocols as a multi-
stage authenticated key exchange protocol.We extract from the implementation a formal
description of the abstract protocol and define a security model which can capture the
“ratcheting” key update structure as a multi-stage model where there can be a “tree” of
stages, rather than just a sequence. We then prove the security of Signal’s key exchange
core in our model, demonstrating several standard security properties. We have found
no major flaws in the design and hope that our presentation and results can serve as a
foundation for other analyses of this widely adopted protocol.

© International Association for Cryptologic Research 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-020-09360-1&domain=pdf

A Formal Security Analysis of the Signal Messaging Protocol 1915

1. Introduction

Revelations about mass surveillance of communications have made consumers more
privacy-aware. In response, scientists and developers have proposed techniques which
can provide security for end users even if they do not fully trust the service providers.
For example, the popular messaging service WhatsApp was unable to comply with
Brazilian government demands for users’ plaintext messages [15] because of its end-to-
end encryption.
Early instant messaging systems did not provide much security. While some systems

did encrypt traffic between the user and the service provider, the service provider retained
the ability to read the plaintext of users’ messages. Off-the-Record Messaging [16,29]
was oneof thefirst security protocols for instantmessaging: acting as a plug-in to a variety
of instant messaging applications, users could authenticate each other using public keys
or a shared secret passphrase and obtain end-to-end confidentiality and integrity. One
novel feature of OTR was its fine-grained key freshness: along with each message round
trip, users established a fresh ephemeral Diffie–Hellman (DH) shared secret. Since it
was not possible to work backward from a later state to an earlier state and decrypt
past messages, this technique became known as ratcheting; in particular, asymmetric
ratcheting since it involves asymmetric (public key) cryptography. OTR saw relatively
limited adoption, but its ratcheting technique can be seen in modern security protocols.
Perhaps the first secure instant message protocol to achieve widespread adoption

was Apple’s iMessage, a proprietary protocol that provides end-to-end encryption. A
notable characteristic of iMessage is that it automatically manages the distribution of
users’ long-term keys, and in particular (as of this writing) users have no interface for
verifying friends’ keys. iMessage, unfortunately, had a variety of flaws that seriously
undermine its security [37].

The Signal Protocol

While there has been a range of activity in end-to-end encryption for instant messaging
[32,70], the most prominent development in this space has been the Signal messaging
protocol, “a ratcheting forward secrecy protocol that works in synchronous and asyn-
chronous messaging environments” [54,55]. Signal’s goals include end-to-end encryp-
tion as well as advanced security properties such as perfect forward secrecy and “future
secrecy”.
The Signal protocol can be roughly divided into three types of stages:

• The initial key exchange, or X3DH (extended triple Diffie–Hellman) protocol [63],
which combines long-term, medium-term and ephemeral Diffie–Hellman keys to
produce a shared secret “root” value.

• An asymmetric ratchet stage [62], where users alternate in sending new ephemeral
Diffie–Hellman keys in a ping-pong fashion with previously generated root keys to
generate forward-secret chaining keys.

• A symmetric ratchet stage [62], where users take no additional entropy but instead
use key derivation functions to ratchet forward chaining keys to create symmetric
encryption keys.

1916 K. Cohn-Gordon et al.

Each message sent by a user is encrypted using a fresh message key, which attempts
to provide a high degree of forward secrecy. The ping-pong pattern of new ephemeral
Diffie–Hellman keys injects additionally entropy into this process, which is intended to
continually achieve perfect forward secrecy as well as post-compromise security.
The Signal protocol, and in particular its ratcheting construction, has a relatively com-
plex history. TextSecure [55] was a secure messaging app and the predecessor to Signal.
It contained the first definition of Signal’s “Double Ratchet”, which effectively com-
bines ideas from OTR’s asymmetric ratchet and a symmetric ratchet (which applies a
symmetric key derivation function to create a new key, but does not incorporate fresh
Diffie–Hellman (DH) material, similar to so-called forward-secure symmetric encryp-
tion [11]). TextSecure’s combined ratchet was referred to as the “Axolotl Ratchet”,
though the name Axolotl was used by some to refer to the entire protocol. TextSecure
was later merged with RedPhone, a secure telephony app, and was renamed Signal,1 the
name of both the instant messaging app and the cryptographic protocol. In the rest of
this paper, we will be discussing the cryptographic protocol only.
The Signal cryptographic protocol has seen explosive uptake of encryption in personal
communications: it (or a variant) is nowusedbyWhatsApp [72],Wire [38], andFacebook
Messenger [33], as well as a host of variants in “securemessaging” apps, including Silent
Circle [57], Pond [52], and (via the OMEMO extension [69] to XMPP) Conversations
[24] and ChatSecure [4].

Security of Signal

One might have expected this widespread uptake of the Signal protocol to be accompa-
nied by an in-depth security analysis and examination of the design rationale, in order
to: (i) understand and specify the security assurances which Signal is intended to pro-
vide and (ii) verify that it provides them. However, this was not the case when it was
released: when WhatsApp’s Signal Protocol integration was announced in 2015, there
was little Signal Protocol documentation available, and no in-depth security analysis.
This was in stark contrast to the ongoing development of the next version of the Trans-
port Layer Security protocol, TLS 1.3, which explicitly involved academic analysis in
its development [14,26,30,43,47,53].
Since then, documentationhas been introduced for both theX3DHinitial key exchange

protocol [63] and the Double Ratchet protocol [62], covering both the asymmetric and
symmetric ratcheting stages of the Signal protocol.
Frosch et al. [35,36] had performed a security analysis of TextSecure v3, showing

that in their model the computation of the long-term symmetric key which seeds the
ratchet is a secure one-round key exchange protocol and that the key derivation function
and authenticated encryption scheme used in TextSecure are secure. However, it did not
cover any of the security properties of the ratcheting mechanisms.
Providing a security analysis for the Signal protocol is challenging. First, Signal employs
a novel and previously unstudied design, involving over ten different types of keys and a
complex update process which leads to various “chains” of related keys. It therefore does

1TextSecure v1 was based on OTR; in v2 it migrated to the Axolotl Ratchet and in v3 made some changes
to the cryptographic primitives and the wire protocol. Signal is based on TextSecure v3.

A Formal Security Analysis of the Signal Messaging Protocol 1917

not directly fit into traditional analysis models. Second, some of its claimed properties
have only been formalised relatively recently [23].

1.1. Contributions

We provide an in-depth formal security analysis of the key establishment core of the
Signal messaging protocol, which is used by more than a billion users.
Our paper focuses on themulti-stageAKE protocol aspect of Signal. Our formalism in

Sect. 4 defines what a multi-stage AKE protocol is and a generic security experiment for
multi-stage AKE protocols capturing session-key indistinguishability and then provides
specialized freshness conditions that capture specific properties of Signal.
Compared to previous multi-stage AKE security models which involve a single

sequence of stages within each session, our model allows for a tree of stages which
model the various “chains” in Signal.
Our model remains generic for multi-stage AKE protocols as it is parameterized by

freshness and cleanness conditions that allow the model to capture different security
properties of session key indistinguishability. We proceed to provide cleanness condi-
tions that are specialized to capture specific properties of Signal corresponding to its
unique security goals. Among the interesting aspects of our model are the subtle dif-
ferences between security properties of keys derived via symmetric and asymmetric
ratcheting. In particular, the relationship between the initial key exchange and the sub-
sequent ratcheting stages is partly why we chose to capture both the initial key exchange
and the subsequent protocol in a single model. In addition, there is no clear delineation
within Signal between these two protocols, as some secret values generated during the
initial X3DH key exchange are reused within the subsequent Double Ratchet protocol.
We subsequently prove that the key establishment core of Signal is secure in our

model, providing the first formal security guarantees for Signal.
We give a proof sketch in Sect. 5 and the full proof in Sect. B.3. At a high level, the

proof technique is relatively straightforward and conventional. We suppose that there
exists an adversary which breaks Signal and construct an adversary which breaks a
primitive. To do so, we perform a series of game hops, followed by a case distinction
on the type of attack the adversary performs. Specifically, we split our analysis into five
general cases, each corresponding to a “stage” that derives a message key, be they the
initial X3DH key exchange, an asymmetric ratcheting stage, or a symmetric ratcheting
stage.Within these stages,we split our analysis further into subcases, each corresponding
to a pair of Diffie–Hellman keyshares that the attacker has not accessed the associated
secret value of. After some more game hops, we arrive at a game which is unwinnable
by construction. Combining the intermediate probability bounds leads us to our overall
security theorem.
Signal does not cleanly separate key exchange from subsequent data messages, and

so we had to rearrange the order of certain operations in order to make this separation. It
also reuses Diffie–Hellman keys for signatures; we did not model this reuse. The details
of these changes are described later.
Our full proof is in the random oracle model, but we have also outlined the steps

required for a proof in the standard model as a delta to the original proof, using (a
variant of) the PRF-ODH assumption. As our proof is essentially a case distinction, the

1918 K. Cohn-Gordon et al.

latter addition is not only arguably using a more plausible cryptographic assumption,
but also provides more concrete analysis of the different security guarantees depending
on how a message key is derived in the Signal Protocol.
In practice, Signal is more than just its key exchange protocol. In Sect. 6, we describe

many other aspects of Signal that are not covered by our analysis, which we believe are a
rich opportunity for future research. We hope our presentation of the protocol in Sect. 2
can serve as a starting point for understanding Signal’s core.

1.2. Additional Related Work

A moderate body of research has arisen around the Signal Protocol, of which we give a
brief summary.
In concurrent work to the conference version of this paper, Kobeissi, Bhargavan, and
Blanchet [45] use ProVerif andCryptoVerif to analyse a simplified variant of Signal spec-
ified in a JavaScript variant calledProScript. Theirmain focus is to present amethodology
for automated verification for secure messaging protocols and their implementations,
and they consider a variant of Signal (that, e.g., does not use symmetric ratcheting). They
identify a possible key compromise impersonation (KCI) attack; we discuss this further
in the context of our model in our discussion of freshness in Sect. 4.3. From the Pro-
Script code, they automatically extract ProVerif models that consider a finite number of
sessions without loops. The CryptoVerif models are created manually. In both cases, the
analysis involves the systematic manual exploration of several combinations of com-
promised keys. In contrast, we set out to manually construct and prove the strongest
possible property that holds for Signal. For the core protocol design, this allows us to
prove a stronger and more fine-grained security property.

Related Techniques

Symmetric ratcheting and Diffie–Hellman (DH) updates (asymmetric ratcheting) are
not the only way of updating state to ensure forward secrecy—i.e., that compromise of
current state cannot be used to decrypt past communications. Forward-secure public key
encryption [20] allows users to publish a short unchanging public key; messages are
encrypted with knowledge of a time period, and after receiving a message, a user can
update their secret key to prevent decryption of messages from earlier time periods.
Signal’s asymmetric ratcheting, which it inherits from the design of OTR [16], has

been claimed to offer properties such as “future secrecy”. Future secrecy of protocols like
Signal has been discussed in depth by Cohn-Gordon, Cremers, and Garratt [23]. Their
key observation is that Signal’s future secrecy is (informally) specified with respect to a
passive adversary and therefore turns out to be implied by the formal notion of forward
secrecy. Instead, they observe that mechanisms such as asymmetric ratcheting can be
used to achieve a substantially stronger property against an active adversary. They for-
mally define this property as “post-compromise security” and showhow this substantially
raises the bar for resourceful network attackers to attack specific sessions. Furthermore,
their analysis indicates that post-compromise security of Signal may depend on subtle
details related to device state reset and the handling of multiple devices.

A Formal Security Analysis of the Signal Messaging Protocol 1919

Green and Miers [40] suggest using puncturable encryption to achieve fine-grained
forward security with unchanging public keys: instead of deleting or ratcheting the secret
key, it is possible to modify it so that it cannot be used to decrypt a certain message.
While this is an interesting approach (especially for its relative conceptual simplicity),
we focus on Signal due to its widespread adoption.
Rösler, Mainka, and Schwenk [68] study practical vulnerabilities in the group chat

implementations in a number of messaging systems. Our work, in contrast, focuses only
on the two-party case.

Secure Channel Models

Bellare et al. [10] develop generic security definitions for ratcheted key exchange in a
different context, also based on a computational model with key indistinguishability.
They describe a Diffie–Hellman-based protocol that is somewhat similar to the Signal
protocol in that it uses a ratcheting mechanism and updates state, and prove that it
is secure in their model under an oracle Diffie–Hellman assumption. They also show
how to combine symmetric encryption schemes with ratcheted key exchange schemes.
Their model captures variations of “backward” (healing from compromise) and forward
secrecy, but theirmodel only allows for one-way communication betweenAlice andBob,
so the security notions are one-sided: if the receiver’s long-term key is compromised
then all security is lost. They also only capture the asymmetric type of ratcheting in
this sense and do not consider symmetric ratcheting. The authors explicitly identify
modelling Signal as future work.
Building on Bellare et al. [10], Poettering and Rösler [64] extend to a model which

covers bidirectional updates, following a purist approach. They give a stronger notion of
compromise than ours and give constructions meeting their definition from hierarchical
identity-based encryption. Durak and Vaudenay [31] and Jost, Maurer, and Mularczyk
[44] continue along these lines, the former avoiding key-update primitives and the latter
slightly weakening the security definition while remaining stronger than ours. Finally,
Alwen, Coretti, and Dodis [1] give a clean-slate security model which additionally
captures “immediate decryption”, which we do not cover in our analysis.

Overview

In Sect. 2, we give a detailed presentation of the Signal protocol. We follow this by
a high-level description of its threat model in Sect. 3 and a formal security model in
Sect. 4. In Sect. 5, we prove security of Signal’s core in our model. As a first analysis
of a complex protocol, our model has some limitations and simplifying assumptions,
discussed in detail in Sect. 6. We conclude in Sect. 7.

2. The Core Signal Protocol

The Signal protocol aims to send encrypted messages from one party to another. At a
high level, Signal is an asynchronous secure channel protocol, with keys computed by a
multi-stage AKE protocol, between an initiator Alice and a responder Bob, with the help

1920 K. Cohn-Gordon et al.

of a key distribution server which only stores and relays information between parties,
but does not perform any computation.
As stated above, we focus on solely the key establishment component of Signal, which

can be thought of as a multi-stage authenticated key exchange protocol.

Basic Setup

Signal assumes each party has a long-term public/private key pair, referred to as the
identity key. However, since the parties might be offline at any point in time, standard
authenticated key-exchange (AKE) solutions cannot be directly applied. For instance,
using Diffie–Hellman (DH) key-exchange to achieve perfect-forward secrecy requires
both parties to contribute new ephemeral Diffie–Hellman (DH) keys, but the recipient
may be offline at the time of sending.
Instead, Signal implements an asynchronous transmission protocol, by requiring

potential recipients to pre-send batches of ephemeral public keys, during registration
or later. When the sender wishes to send a message, she obtains keys for the recipient
from an intermediate server (which only acts as a buffer) and performs an AKE-like
protocol using the long-term and ephemeral keys to compute a message encryption key.
This basic setup is then extended by making the message keys dependent on all pre-

viously performed exchanges between the parties, using a combination of “ratcheting”
mechanisms to form “chains”. New random and secret values are also introduced into
the computations at various points, influencing future message keys computed by the
communicating partners.

Scope

The Signal protocol uses an intricate design. Our focus is to study the existing protocol:
we aim simply to report what Signal is, not why any of its design choices were made.
It is not entirely straightforward to pin down a precise definition of the intended

usage and security properties of Signal. Our descriptions in this section were aided by
existing documentation but the ultimate authority was the implementation2 [54]. After
the conference version of this paper was published, Open Whisper Systems released
high-level specifications for X3DH [63] and the Double Ratchet [62] which help to
clarify many details, although the codebase is still necessary to obtain a full definition
and the specification does not contain detailed definitions of the security goals.

2.1. Protocol Overview

Focusing on Signal as a multi-stage authenticated key exchange protocol, the main steps
are as follows:

2The tagged releases of libsignal lag behind the current codebase. The commit hash of the state of the
repository as of our reading is listed in the bibliography. Note that there are separate implementations in C,
JavaScript and Java; the latter is used by Android mobile apps and is the one we have read most carefully.

A Formal Security Analysis of the Signal Messaging Protocol 1921

Fig. 1. A tree of stages from one example execution of Signal. The content of each node is the stage name
and the session key derived during the stage .

Registration. (Section 2.6)
At installation (and periodically afterwards), both Alice and Bob independently register
their identity with a key distribution server and upload some long-term, medium-term,
and ephemeral public keys.
Session setup. (Section 2.7)
Alice requests and receives a set of Bob’s public keys from the key distribution server
and use them to set up a long-lived messaging session and establish initial symmetric
encryption keys. This is called the TripleDH handshake or X3DH.
Synchronous messaging (a.k.a. asymmetric-ratchet updates). (Section 2.9)

When Alice wants to send a message to Bob (or vice versa) and has just received
a message from Bob, she exchanges Diffie–Hellman values with Bob generating new
shared secrets and uses them to begin new chains of message keys. Each Diffie–Hellman
(DH) operation is a stage of the “asymmetric ratchet” (and strictly occurs in a ping-pong
fashion).
Asynchronous messaging (a.k.a. symmetric-ratchet). (Section 2.8)

When Alice wants to send a message to Bob (or vice versa) but has not received a
message from Bob since her last sent message to Bob, she derives a new symmetric
encryption key from her previous state using a PRF. Each PRF application is a stage of
the “symmetric ratchet”.
Figure 1 shows a tree of stages from one example execution of Signal, represented
as a graph. The session setup is the stage labelled 0. The asymmetric-ratchet update
stages are labelled asym-ri:1, asym-ir:1, and so on, depending on whether a reply from
the responder (ri) or initiator (ir) triggers the stage. The symmetric-ratchet stages are
labelled sym-ir:0, 1, sym-ir:0, 2, sym-ri:1, 1, and so on, depending on whether they
are derived from an initiator-triggered asymmetric stage (ir) or a responder-triggered
asymmetric stage (ri). Each node in the graph in Fig. 1 shows a session key k derived
by the key exchange at each stage, which is the message key mk used to encrypt the
application messages sent during that stage.
We call this entire execution a single session of a multi-stage AKE protocol. In fact,

Alice and Bob can run many simultaneous sessions between them or with other parties,
each admitting an arbitrary sequence of stages consisting of symmetric and asymmetric
ratcheting.
Starting to look at the protocol messages, Fig. 2 shows a simplified form of the

message flow for an example execution of the Signal protocol. (Simplifications include

1922 K. Cohn-Gordon et al.

Fig. 2. Message flow of an example Signal execution between two clients A and B via a server S. Notation
and some operations have been simplified for clarity compared to later use.

omission of some intermediate values and collapsing several KDF applications into a
single application. A detailed version is given in Fig. 6.) Already we can see a few
additional characteristics. At each asymmetric ratchet stage, the sending party sends a
fresh ephemeral Diffie–Hellman public key. Each asymmetric ratchet stage derives its
keyingmaterial from aDHpair (consisting the sending party’s new ephemeral DHpublic
key and the receiving party’s previous ephemeral DH public key) and the root key rk
from the previous asymmetric ratchet stage (or the initial handshake). Each symmetric
ratchet stage derives its keying material from the chaining key ck from the previous
symmetric stage (or the asymmetric stage which started this symmetric ratchet).
In the rest of this section, we state the cryptographic core of the Signal protocol that

we analyse. We begin with some notation, including a list of the various keys used in
the protocol, and then examine how each stage of the protocol works.

2.2. Notation—Cryptographic Primitives

Let g denote the generator of a group G of prime order q; we write the group multi-
plicatively. Signal uses one of two elliptic curves to implement X3DH: curve X25519
[12] or curve X448 [41].

A Formal Security Analysis of the Signal Messaging Protocol 1923

Signal uses key derivation functions in two differentways, as shown in Fig. 7, applying
either HMAC − SHA256 [6] or HKDF [48] using SHA256 as indicated.

AEAD denotes an authenticated encryption scheme with associated data [67]. In
Signal, this is an encrypt-then-MAC scheme: encryption is AES256 in CBC mode with
PKCS#5 padding, and the MAC is HMAC − SHA256. This is the same combination
originally used in TextSecure v3, which was shown by Frosch et al. [36] to have standard
authenticated encryption security properties. Since our focus is on the key exchange
portion, we omit details of the AEAD and treat it in a black-box fashion.
Sign is a signature scheme based on Ed25519 [13,61]. We treat it as a black-box

signature.

2.3. Notation—Sessions and Stages

We denote A’s i th session by π i
A. Note that a session refers to an execution of a protocol

at a party, so in the normal run of the protocol between Alice and Bob, there will be two
sessions: one at Alice and one at Bob.
Within a session, Signal admits a tree of various different stages, as shown in Fig. 1.

We refer to stages using a term in [square brackets]. Each stage corresponds to the
establishment of a new message encryption key.
The initial stage is [0]; the initiator retrieves the responder’s prekey bundle of public

keys from the key distribution server and then sends a flow to the responder.
Alice and Bob assign different roles to the stages they complete: Alice may consider

some stage s as generating a sending key, while Bob considers his version of the same
stage as generating a receiving key. To avoid persistent case distinctions, we adopt a
role-agnostic naming scheme, describing stages as “-ir” if they are used for the initiator
to send to the responder, and as “-ri” if they are used for the responder to send to the
initiator. This maintains the invariant that stages with the same name generate the same
key(s).
The asymmetric ratchet chain builds from the initial stage using alternating stages of

two types. First, there is a flow from the responder to the initiator, denoted [asym-ri:1].
Upon receiving this flow, the initiator completes the asymmetric ratchet in a stage denoted
[asym-ir:1]. They continue to alternate: [asym-ri:2], [asym-ir:2], and so on.
Symmetric ratchet chains are built from each stage of the asymmetric ratchet chain

(including the initial stage), any time a party wants to send an additional application
message before having received a response. Symmetric ratchet chain stages built from
[asym-ri:x], for x ≥ 1, are denoted [sym-ri:x, 1], [sym-ri:x, 2], and so on. Symmetric
ratchet chain stages [sym-ir:x, 1], [sym-ir:x, 2], and so on, are built from [asym-ir:x],
for x ≥ 1, and [0] for x = 0.

2.4. Notation—Keys

Signal distinguishes between at least ten different classes of key, which are summa-
rized in Table 1.

Our convention is that keys are written in italics and end with the letter k. For asym-
metric key pairs, the corresponding public key ends with the letters pk and is always
computed by group exponentiation with base g and the private key as the exponent:

1924 K. Cohn-Gordon et al.

Table 1. Keys used in the signal protocol .

Asymmetric
ipkA ikA A’s long-term identity key pair
prepkB prekB B’s medium-term (signed) prekey pair
eprepkB eprekB B’s ephemeral prekey pair (for the initial handshake)
epkA ekA A’s ephemeral key pair (for the initial handshake)
rchpkA

x rchkA
x A’s x th ratchet key pair (for the x th asymmetric ratchet)

Symmetric
ckir

x,y yth chaining key in the x th initiator–responder symmetric ratchet chain
ckri

x,y yth chaining key in the x th responder–initiator symmetric ratchet chain
mkir

x,y yth message key in the x th initiator–responder symmetric ratchet chain
mkri

x,y yth message key in the x th responder–initiator symmetric ratchet chain
rkx x th root key on the asymmetric ratchet

Asymmetric key pairs show public and private components

pk = gk. If the identity of the agent A who generates a key is unclear, we mark this in
superscript (i.e. kA), but omit this where it is clear.
Every stage derives new keys. To identify these keys uniquely, we write the type of

the stage deriving a key k in superscript, and the index of that stage in subscript. For
example,mkri

x,y is themessage key derived in stage [sym-ri:x, y]. Not all stages derive all
keys: for example, there is no rksym-ri:x,y , since root keys are not affected by symmetric
updates.
For the purposes of modelling key exchange, the “session key” of each stage is the

message key derived during that stage. The exact mapping of session keys to stages is
shown in Table 2.

The naming scheme for keys is also role-agnostic: in intended operation, keys will
be equal if and only if they have the same name. As with stages, agents have different
intended uses for the same key: for example, the initiator would use the key mkir

x,y for
encrypting messages to send, and the responder would use the same key for decrypting
received messages.
In our model, there are technically no stages [sym-ir:x, 0] or [sym-ri:x, 0], but there

are keys with these indexes, since the first entry in each sending and receiving chain is
created by the asymmetric update starting that chain (see Fig. 1). We could equivalently
think of Signal only deriving message keys in symmetric stages and allowing y = 0, in
which case asymmetric stages would not derive message keys. Our formulation simply
renumbers keys, so that every stage derives a message key.

2.5. The Protocol

We now proceed to describe each stage of the protocol in detail. The full description of
the protocol is given in Fig. 6, but we deliberately do not show that figure right away,
instead using alternative diagrams which we hope provide greater clarity for specific
parts of the protocol. However, each stage in the subsequent subsections corresponds to
the portion of Fig. 6 as indicated.

A Formal Security Analysis of the Signal Messaging Protocol 1925

Fig. 3. Diffie–Hellman keys used in the initial handshake. The dashed line is optional: it is omitted from the
session key derivation if eprekB is not sent. Note the asymmetry: when Alice initiates a session with Bob, her
signed prekey is not used at all. Our freshness conditions in Sect. 4.3 will be partially based on this graph.

2.6. Registration Stage—Figure 6a

Upon installation (and periodically afterwards), all agents generate a number of crypto-
graphic keys and register themselves with a key distribution server.
Specifically, each agent P generates the following Diffie–Hellman (DH) private keys:

(i) a long-term “identity” key ikP ;
(ii) a medium-term “signed prekey” prekP ; and
(iii) multiple short-term “one-time prekeys” eprek.

The public keys corresponding to these values are then uploaded to the server, together
with a signature on prek using ik. These are collectively called the “prekey bundle”.

2.7. Session Setup Stage—Figure 6b

In the session-setup stage, public keys are exchanged and used to initialize shared secrets.
The underlying key exchange protocol is a one-round Diffie–Hellman (DH) protocol
called the Signal Key Exchange or X3DH,3 comprising an exchange of various Diffie–
Hellman (DH) public keys, computation of various Diffie–Hellman (DH) shared secrets
as in Fig. 3, and then application of a key derivation function.
While many possible variants of such protocols have been explored in-depth in the

literature (HMQV [49], Kudla-Paterson [50], NAXOS [51] among many others), the
session key derivation used here is new and not based on one of these standard protocols,
though it draws some inspiration from [50].
Recall that for asynchronicity Signal uses prekeys: initial protocol messages which

are stored at an intermediate server, allowing agents to establish a session with offline
peers by retrieving one of their cached messages (in the form of a Diffie–Hellman (DH)
ephemeral public key).
In addition to this ephemeral public key, agents also publish a “medium-term” key,

which is shared between multiple peers. This means that even if the one-time ephemeral
keys stored at the server are exhausted, the session will go ahead using only a medium-
term key. This form of key reuse is studied in [56] and will be modelled in this paper.
Thus, session setup in the Signal protocol consists of two steps: first, Alice obtains
ephemeral values from Bob (usually via a key distribution server); second, Alice treats

3The key exchange protocol was previously referred to as TripleDH, from the three Diffie–Hellman (DH)
shared secrets always used in the KDF (although in most configurations four shared secrets are used). The
nameQuadrupleDH has also been used for the variant which includes the long-term/long-termDiffie–Hellman
(DH) value, not as might be expected the variant which includes the one-time prekey.

1926 K. Cohn-Gordon et al.

Fig. 4. A key schedule diagram for the initial X3DH key exchange of the Signal protocol. In this caption, the
terminology “sending” and “receiving” refers to Alice’s point of view. Note that denotes Diffie–Hellman
(DH) values that are used in multiple X3DH exchanges, denotes Diffie–Hellman (DH) values that are
used only in a single X3DH exchange, and denotes Diffie–Hellman (DH) values that are also used in the
Double Ratchet protocol. This example key schedule captures an initial X3DH key exchange, in which Alice
uses the standard cryptographic data from Bob’s prekey bundle (plus a one-time ephemeral prekey eprepkB)
to compute the first root key rk1, the first sending chain key ckir

0,1, and the first message key mkir
0,0 (Color

figure online).

the received values as the first message of a Signal key exchange and completes the
exchange in order to derive a master secret.

2.7.1. Receiving Ephemerals

The most common way for Alice to receive Bob’s session-specific data is for her to
query a semi-trusted server for precomputed values (known as a PreKeyBundle).
When Alice requests Bob’s identity information, she receives his identity public key

ipkB , his current signed prekey prepkB , and a one-time prekey eprepkB if there are
any available. Signed prekeys are stored for the medium term and therefore shared
between everyone sending messages to Bob; one-time keys are deleted by the server
upon transmission. Alice’s initial message contains identifiers for the prekeys so that
Bob can learn which were used.

2.7.2. Computing the Shared Secrets

Figure 4 shows the key schedule for the initial handshake in greater detail. (This is a
subset of Fig. 5.)

Once Alice has received the above values, she generates her own ephemeral key
ekA and computes a session key by performing three or four group exponentiations as
depicted in Fig. 3. She then concatenates the resulting shared secrets and passes them
through a key derivation function (KDFr, see Fig. 7a) to derive an initial root key rk1
and sending chain key ckir

0,0. (No Diffie–Hellman (DH) value is passed to KDFr for
this initial invocation.) For modelling purposes, we also have Alice generate her initial

A Formal Security Analysis of the Signal Messaging Protocol 1927

sendingmessage keymkir
0,0 (which is this stage’s session key output) and the next sending

chain key ckri
1,0. Finally, she generates a new ephemeral Diffie–Hellman (DH) key rchkA

0
known as her ratchet key.
For Bob to complete4 the key exchange, he must receive Alice’s public ephemeral key

epkA and public ratchet key rchpkA
0 . In the Signal protocol, Alice attaches these values

to all messages that she sends (until she receives a message from Bob, since from such
a message she can conclude that Bob received epkA and rchpkA

0). To disentangle the
stages of the model, we have Alice send epkA, rchpkA

0 in a separate message; thus, once
the session-construction stage is complete, both Alice and Bob have derived their root
and chain keys.
When Bob receives epkA and rchpkA

0 , he first checks that he currently knows the
private keys corresponding to the identity, signed pre-, and one-time prekey which Alice
used. If so, he performs the receiver algorithm for the key exchange, deriving the same
root key rk1 and chain key (which he records as ckir

0,0). For modelling purposes, we also

have Bob generate his initial receiving message key mkir
0,0 (which is this stage’s session

key output) and the next receiving chain key ckir
0,1.

The specific key derivation functions used are shown in Fig. 7.

2.8. Symmetric-Ratchet Stage—Figure 6c

Two sequences of symmetric keys will be derived using a PRF chain, one for sending
and one for receiving. The symmetric chains—to the top and the bottom in Fig. 1—may
be advanced for one of two reasons: either Alice wishes to send a new message, or she
wishes to decrypt a message she has just received.
In the former case, Alice takes her current sending chain key ckir

x,y and applies the
message key derivation function KDFm to derive two new keys: an updated sending
chain key ckir

x,(y+1) and a sending message key mkir
x,y . Alice uses the sending message

key to encrypt her outgoing message and then deletes it and the old sending chain key.
This process can be repeated arbitrarily.
An example of the symmetric ratchet is shown in the bottom of Fig. 5. Specifically,

on the lines labelled “chaining key” and “message key”, there is one symmetric ratchet
stage shown: stage [sym-ir:0, 1] which computes mkir

0,1.
When Alice receives an encrypted message, she checks the accompanying ratchet

public key to confirm that she has not yet processed it, and if not, she then performs
an asymmetric ratchet update, described below. Regardless, she then reads the metadata
in the message header to determine the index of the message in the receiving chain
and advances the receiving chain as many steps as are necessary to derive the required
receiving message key; by construction, Alice’s receiving message keys equal Bob’s
sending keys. Unlike for the sending case, Alice cannot delete receiving message keys
immediately; she must wait to receive a message encrypted under each one. (Other-
wise, out-of-order messages would be undecryptable since their keys would have been
deleted.)

4If the initial message from Alice is invalid, Bob will in fact not complete a session. This does not affect
our analysis, which considers only secrecy of session keys, but may become important if, e.g., analysing
deniability.

1928 K. Cohn-Gordon et al.

This means that Alice can retain any particular receiving chain for as long as she
wants. Moreover, along any given chain, chain keys can be ratcheted forward to produce
message keys in such a way that message keys are independent of each other so retaining
them while waiting for late messages to arrive should not compromise other messages.
This means that along a receiving chain, Alice can produce the message key for delayed
message 2, while still symmetrically ratcheting forward to decrypt received messages
3, 4, 5, etc., safe in the knowledge that retaining message key 2 while waiting for the
message to arrive should not endanger other message keys along the chain. The two core
concepts of the root key producing chain keys, and the chain keys producing message
keys, mean that messages can arrive in arbitrary order, while Alice and Bob can continue
to asymmetrically and symmetrically ratchet forward.
The open source implementation of Signal has a hard-coded limit of 2000 messages

or five asymmetric updates, after which old keys are deleted even if they have not yet
been used.

2.9. Asymmetric-Ratchet Stage—Figure 6d

The final top-level stage of Signal is the asymmetric-ratchet update. In this stage, Alice
and Bob take turns generating and sending new Diffie–Hellman (DH) ratchet public
keys and using them to derive new shared secrets. This behaviour occurs strictly in
a ping-pong fashion, i.e. Bob will continue to use the same ratchet key until he sees
a new ratchet key from Alice. In Fig. 6d, these newly generated keys are denoted by
rchpki

x , where i refers to the identity of the sending party (either A or B for Alice and
Bob respectively) and x refers to the numbered asymmetric stage i.e. [asym-ir:x] or
[asym-ri:x]. These are accumulated in the asymmetric ratchet chain, from which new
(symmetric) message chains are initialized.
When Alice receives a message from Bob, it may be accompanied by a new (previ-

ously unseen) ratchet public key rchpkB
x−1. If so, this triggers Alice to enter her next

asymmetric ratchet stage [asym-ir:x]. Note that Alice already has stored a previously
generated private ratchet key rchkA

x−1. Before decrypting the message, Alice updates her
asymmetric ratchet as per Fig. 6d. This consists of two steps:

• In the first step, denoted [asym-ri:x] in Fig. 6d, Alice derives three secret values: an
intermediate secret value tmp, a receiving chain key ckri

x,1, and a receiving message

key mkri
x,0. Alice computes first a Diffie–Hellman (DH) shared secret (between

the newly received ratchet public key rchpkB
x−1 and her old ratchet private key

rchkA
x−1) and combines this with the previously computed root chain key rkx to

derive an intermediate secret value tmp and a new receiving chain key ckri
x,0 by

applying KDFr . Afterwards, Alice uses the new chain key ckri
x,0 as input to KDFm

to compute the next receiving chain key ckri
x,1 and receiving message key mkri

x,0.

Alice generates a new Diffie–Hellman (DH) ratchet private key rchkA
x .

• In the second step, denoted [asym-ir:x] in Fig. 6d, Alice computes a second Diffie–
Hellman (DH) shared secret (between the received ratchet public key rchpkB

x−1 and
her new ratchet private key rchkA

x) and combines this with the intermediate secret
value tmp by applying KDFr to compute the next root chain key rkx+1 and a new

A Formal Security Analysis of the Signal Messaging Protocol 1929

Fig. 5. A key schedule diagram for an example session of the Signal Protocol. In this caption, the terminology
“sending” and “receiving” refers to Alice’s point of view. Note that denotes Diffie–Hellman (DH) values
that are used in multiple X3DH exchanges, denotes Diffie–Hellman (DH) values that are used only in
a single X3DH exchange, and denotes public keys that are used in two asymmetric ratchets in a single
Double Ratchet protocol. This example key schedule captures an initial X3DH key exchange, in which Alice
uses the standard cryptographic data fromBob’s prekey bundle (plus a one-time ephemeral prekey eprepkB) to
compute the first root key rk1, the first sending chain key ckir

0,1, and the first message key mkir
0,0. Additionally,

Alice has sent another message before receiving a message from Bob, which requires a symmetric ratchet of
the first sending chain to derive the next message key mk[ir][0, 1]. Afterwards, Bob has sent a new ratchet
public key rchpkB

0 that he combines with Alice’s ratchet key rchpkA
0 to compute the first receiving chain key

ckri
1,0, used to derive the next chain key ckri

1,1 and the first receiving message key mkri
1,0. Finally, Alice has

sent a new ratchet key rchpkA
1 that is combined with Bob’s previous ratchet public key rchpkB

0 to compute the
next root key rk2 (Color figure online).

sending chain key ckir
x,0. Alice then uses the new sending chain key as input to

KDFm to generate the next sending chain key ckir
x,1 and receiving message key

mkir
x,0.

The message keys in the first and second steps have slightly different security prop-
erties, so they are recorded in our model as belonging to distinct stages [asym-ri:x] and
[asym-ir:x].

Alice then sends her new ratchet public key rchpkA
x along with future messages to

Bob, and the process continues indefinitely. An example key schedule diagram can be
found in Fig. 5.
Figure 5 shows the key schedule formultiple stages of an example session of the Signal

protocol. Two examples of the asymmetric ratchet are shown in the right of Fig. 5: stage
[asym-ri:1]which computes mkri

1,0, and part of stage [asym-ir:1]which computes mkir
1,0

from ckir
1,0 (the computation of mkir

1,0 did not fit in the figure, but indeed is the output of
that stage).
Bobdoes the corresponding operations shown inFig. 6 to compute the sameDHshared

secrets and the corresponding root, chain, and message keys. While symmetric updates
can be triggered either by Alice (the session initiator) or Bob (the session responder)
and thus could be as in Fig. 6c or its horizontal flip, asymmetric updates can only be

1930 K. Cohn-Gordon et al.

Fig. 6. Signal protocol including preregistration of keys. Local actions are depicted in the left and right
columns, and messages flow between them.We show only one step of the symmetric and asymmetric ratchets;
they can be iterated arbitrarily. Variables storing keys are defined in Table 1, KDFr and KDFm in Fig. 7, and
session identifiers in Table 2. Dark red text indicates reordered actions in our model, as discussed in Sect. 5.
Each stage derives message keys with the same index as the stage number, and chaining/root keys with the
index for the next stage; the latter is passed as state from one stage to the next. State info st in asymmetric
stages is defined as the root key used in the key derivation, and for symmetric stages, st is defined as the
chain key used in key derivation. Symmetric stages always start at y = 1 and increment. When an actor sends
consecutive messages, the first message is a DH ratchet and then subsequent messages use the symmetric
ratchet. When an actor replies, they always DH ratchet first; they never carry on the symmetric ratchet (Color
figure online).

A Formal Security Analysis of the Signal Messaging Protocol 1931

Fig. 7. Key derivation functions for root keys, chaining keys, and message keys in signal.

triggered by Alice (the session initiator) receiving a new (previously unseen) ratchet key
from Bob (the session responder) and not the other way around, so Fig. 6d will never
be horizontally flipped. This means that the transmission of new ratchet keys between
Alice and Bob will always occur in a strictly ping-pong fashion.

2.10. Memory Contents

Signal is a stateful protocol, and a number of different values are available in Alice’s
memory at any time. Alice’s global state—shared between all of her sessions—contains
four different collections of values: identity keys (Alice’s own identity private key, and
the identity public keys of all her peers), signed prekeys, ephemeral keys, and a list of
all sessions.
Furthermore, each session in the collection of sessions above contains the keys used

by the protocol. Specifically, a session always has its agent’s identity private key and its
peer’s identity public key, a current root and sending chain key, and a current ratchet key.
In addition, it has some number of receiving chain and message keys, corresponding to
out-of-order messages not yet received from the peer.
In Sect. 4, we will need to address specific values in the memory of specific sections,

which are detailed in Table 2.

3. Threat Models

We will analyse Signal in the context of a fully adversarially controlled network. The
high-level properties we aim to prove are secrecy and authentication of message keys.
Authentication will be implicit (only the intended party could compute the key) rather
than explicit (proof that the intended party did compute the key). Forward secrecy and
“future” secrecy are not explicit goals; instead, derived session keys should remain
secret under a variety of compromise scenarios, including if a long-term secret has been
compromised but a medium or ephemeral secret has not (forward secrecy) or if state
is compromised and then an uncompromised asymmetric stage later occurs (“future”
or post-compromise secrecy [23]). We assume out-of-band verification of identity keys
and medium-term keys and do not consider side channel attacks.

1932 K. Cohn-Gordon et al.

The finer details of our threat model are ultimately encoded in the so-called freshness
predicate, specified in Sect. 4.3, where we provide further information on our threat
model design choices.

On our Choice of Threat Model

Because at the timeofwritingSignal did not claimany formally specified security proper-
ties, as part of our analysiswehad to decidewhich threatmodel to assume.TheREADME
document accompanying the source code [54] states that Signal “is a ratcheting for-
ward secrecy protocol that works in synchronous and asynchronous messaging envi-
ronments”. A separate GitHub wiki page [60] provides some more goals (forward and
future secrecy,5 metadata encryption and detection of message replay/reorder/deletion)
but to the best of our knowledge no mention of message integrity or authentication is
made other than the use of AEAD cipher modes.
We believe that the threat model we have chosen is realistic, although we discuss

later some directions in which it could be strengthened. Parallels can be drawn, for
example, with the TLS 1.3 standard [66, Appendix D], which discusses the following
properties (where the network is fully adversarially controlled, and where the adversary
may compromise the keys of some participants).

Correctness If Alice and Bob complete an exchange together, then they should
derive the same keys.
Secrecy If Alice and Bob complete an exchange to generate a key k, nobody other
than Alice and Bob should be able to learn anything about k.
Key confinement Distinct exchanges should derive distinct keys.
(Implicit) Authentication If Alice believes that she shares the key k with Bob,
nobody other than Bob should be able to learn anything about k.
Forward secrecy An attacker who compromises Alice’s long-term secret after a
session is complete should not be able to learn anything about the keys derived in
that session.
Identity hiding A passive adversary should not learn the identity of partners to a
session.

It is common in the authenticated key exchange literature to assume a trusted public
key infrastructure (PKI), though some models allow the adversary more control [17]. In
Signal, the PKI is combinedwith the network, in the sense that the same server distributes
identity and ephemeral keys. Thus, in some sense assuming a trusted PKI also restricts
the attacker’s control over particular sessions.
Some claims have been made about privacy and deniability [71] in Signal, but these

are relatively abstract. In general, signatures are used but only for the signed prekey in
the initial handshake, meaning that an observer can prove that Alice sent a message [28,
full deniability] to someone but perhaps not to Bob [25, peer deniability].
Additionally, one might consider a threat model that includes imperfect ephemeral

random number generators. Since no static–static Diffie–Hellman (DH) shared secret is

5Future secrecy means “a leak of keys to a passive eavesdropper will be healed by introducing new
Diffie–Hellman (DH) ratchet keys” [60].

A Formal Security Analysis of the Signal Messaging Protocol 1933

included in Signal’s KDF, an adversary who knows all ephemeral values can compute
all secrets. However, Signal continuously updates state with random numbers, so we
capture in our threat model the fact that it is possible to make some security guarantees,
if some, but not all, random numbers are compromised.
The trust assumptions on the registration channel are not defined; Signal specifies

a mandatory method for participants to verify each other’s identity keys through an
out-of-band channel, but most implementations do not require such verification to take
place before messaging can occur. Without it, an untrusted key distribution server can
impersonate any agent.
Signal’s mechanisms suggest a lot of effort has been invested to protect against the

loss of secrets used in specific communications. If the corresponding threat model is an
attacker gaining (temporary) access to the device, it becomes crucial if certain previous
secrets and decrypted messages can be accessed by the attacker or not: generating new
message keys is of no use if the old ones are still recoverable. This, in turn, depends on
whether deletion of messages and previous secrets has been effective. This is known to
be a hard problem, especially on flash-based storage media [65], which are commonly
used on mobile phones.

4. Security Model

In this section, we present a security model for multi-stage key exchange, which we
then apply to model Signal’s initial key exchange as well as its ratcheting scheme. Our
model allows multiple parties to execute multiple, concurrent sessions; each session has
multiple stages. For Signal, the session represents a single chat between two parties,
and each stage represents a new application of the ratchet. Figure 6 depicts, roughly, a
single session. There are three types of stage in Signal: the initial key exchange, asym-
metric ratcheting, and symmetric ratcheting. In addition, ratcheting stages differ based
on whether they are used for generating keys for the initiator to send to the responder
(denoted -ir) or vice versa (denoted—ri). For our purposes, every stage generates a ses-
sion key; depending on the stage, this will be either the sending or the receiving message
key.
On the choice of model. We choose to study the security of Signal in the traditional
key exchange notion of key indistinguishability [7,8] (albeit a multi-stage variant), as
opposed to a monolithic secure channel notion such as authenticated and confidential
channel establishment (ACCE) [42]. It is often preferable to analyse the key exchange
portion independently from the message transport layer and then compose this with
authenticated encryption to establish a secure channel [21]. Monolithic notions like
ACCE are necessary for protocols such as TLS, which use the session key (or values
derived from it) in the channel establishment and thus prevent a clean separation for
composition. As indicated by the parenthetical comments under message arrows in
Fig. 6, Signal uses message keys to authenticate not just data (which is omitted from our
key exchange model) but also handshake messages. In our proof, we therefore modify
the protocol to instead send these handshake messages in the clear, with authentication
enforced via our freshness predicate.We discuss these modifications further in Sect. B.1.

1934 K. Cohn-Gordon et al.

Another subtlety compared to the multi-stage key exchange model of Fischlin and
Günther is that QUIC and TLS 1.3 demand a linear sequence of stages, whereas for our
model of Signal we use a tree of stages, as seen in Fig. 1.
Model notation. We present our model as a pseudocode experiment where the primitive
in question (the multi-stage key exchange protocol) is modelled as a tuple of algorithms,
and then an adversary interacts with the experiment. This approach is commonly used
in many other areas of cryptography, but less so in key exchange papers. Compared with
models and experiments presented in textual format, we argue that our approach makes
it easier to understand some precise details and easier to see subtleties in variations.
We adopt the following notational and typographic conventions. Monotype text

denotes constants; serif text denotes algorithms and variables associated with the actual
protocol (variables are italicized); and sans-serif text denotes algorithms, oracles, and
variables associated with the experiment. Algorithms and Oracles start with uppercase
letters; variables start with lowercase letters.We use object-oriented notation to represent
collections of variables. In particular, we will use π i

u to denote the collection of variables
that party u uses in its i th protocol execution (“session”). To denote the variable v in
stage s of party u’s i th session, we write π i

u .v[s]; note s is not (necessarily) a natural
number. For Signal, s is [0] for the session setup stage; [sym-ir:x, y] or [sym-ri:x, y]
for symmetric sending or receiving stages; or [asym-ri:x] or [asym-ir:x] for the first
and second portions of the x th asymmetric stage. (See also Figs. 1 and 6.)

Diffie–Hellman (DH) protocols conventionally use both ephemeral keys (unique to
a session) and long-term keys (in all sessions of an agent). Signal’s prekeys do not fit
cleanly into this separation, and in order to follow the conventions of the field, we refer
to the reused Diffie–Hellman (DH) keys as “medium-term keys”.
Generality of our model. Some aspects of our model are quite general, and others are
very specific to Signal. Our formulation of amulti-stage key exchange protocol as a tuple
of algorithms, as well as the main experiment and oracles in Fig. 8, should be applicable
to any multi-stage key exchange protocol that includes semi-static (medium term) keys.
However, our freshness definition is highly customized to Signal via our clean clauses,
since we aim to precisely characterize the security properties of Signal’s keys.
The level of generality is an important decision when designing a security model for a

protocol like Signal: on the one hand, a general model allows analysis of and comparison
to other protocols; on the other, of necessity it does not allow fine-grained statements
about the specific protocol under consideration. Our model lies towards the centre of
this spectrum: we aim to keep the overall structure relatively independent of Signal
(though of necessity we added support for medium-term keys), while the cleanness
predicates described later allow us to make fine-grained assertions which capture as
much as possible.
Medium-term key authentication. Signal’s medium-term keys are signed by the same
identity key used for Diffie–Hellman (DH), breaking key separation. Although there has
been some analysis of this form of key reuse [27,59], it is nontrivial to prove secure.
We instead enforce authentication by fiat, allowing the adversary to select any of the
medium-term keys owned by an agent, but not to inject their own. In the game, this is
implemented as an extra argument when the adversary creates a new session.

A Formal Security Analysis of the Signal Messaging Protocol 1935

4.1. Multi-stage Key Exchange Protocol

Definition 1. (Multi-stage key exchange protocol) Amulti-stage key exchange protocol
� is a tuple of algorithms, along with a keyspaceK and a security parameter λ indicating
the number of bits of randomness each session requires. The algorithms are:

• KeyGen()
$�→ (ipk, ik): A probabilistic long-term key generation algorithm that

outputs a long-term public key / secret key pair (ipk, ik). In Signal, these are called
“identity keys”.

• MedTermKeyGen(ik)
$�→ (prepk, prek): A probabilistic medium-term key genera-

tion algorithm that takes as input a long-term secret key ik and outputs a medium-
term public key/secret key pair (prepk, prek). In Signal, these are called “signed
prekeys”; in the key exchange literature, they are sometimes called “semi-static
keys”.

• Activate(ik, prek, role, peerid)
$�→ (π ′, m′): A probabilistic protocol activation

algorithm that takes as input a long-term secret key ik, a medium-term secret key
prek, a role role ∈ {init,resp}, and optionally an identifier of its intended peer
peerid and outputs a state π ′ and (possibly empty) outgoing message m′.

• Run(ik, prek, π , m)
$�→ (π ′, m′): A probabilistic protocol execution algorithm that

takes as input a long-term secret key ik, a medium-term secret key prek, a state π ,
and an incoming protocol or control message m and outputs an updated state π ′
and (possibly empty) outgoing protocol message m′.

Definition 2. (State) A state π is a collection of the following variables:

• π .role ∈ {init,resp}: the instance’s role
• π .peerid: the identifier of the alleged peer
• π .peeripk: the peer’s long-term public key
• π .peerprepk: the peer’s medium-term public key
• π .status[s] ∈ {ε,active,accept,reject}: execution status for stage s, set to
active upon start of a new stage, and set to accept or reject by computation
of the stage’s ratchet key.

• π .k[s] ∈ K: the session key output by stage s
• π .stm: the current position of the protocol’s state machine
• π .st[s]: any additional protocol state values that a previous stage gives as input to
stage s (defined as part of the protocol).

• π .sid[s]: the identifier of stage s of session π ; this is view the actor has of the
session π in stage s, as defined in Fig. 6.

• π .type[s]: the type of freshness required for this stage to have security. For Signal,
this is triple, triple+DHE, asym-ir, asym-ri, sym-ir or sym-ri.

The state of an instance π in our experiment models “real” protocol state that an imple-
mentation would keep track of and use during protocol execution. We will supplement
this in the experiment with additional variables that are artificially added for the exper-
iment. These are administrative identifiers, used to formally reason about what is hap-
pening in our security experiment, e.g., to identify sessions and partners.

1936 K. Cohn-Gordon et al.

4.1.1. Instantiating Signal in Terms of Definition 1

TheKeyGen andMedTermKeyGen algorithms correspond to thefirst two lines of Fig. 6a.
Activate sets each party’s intended role, as well as optionally specifies the identifier

of their intended peer.
The Run algorithm incorporates the rest of Fig. 6, combined with a state machine

deciding which stage to execute based on the current state of the session (stored in the
variable π .stm) and the input m. From the perspective of Run’s state machine, the input
m may be either a distinguished control message (which the user or adversary uses to
unilaterally direct the instance to enter a new stage), or a protocol message, in which case
we assume that metadata present in the incoming real-world protocol message uniquely
directs the state machine how to advance.
The initiator and responder each learn and set peeripk and peerprepk during the

execution of Run in Fig. 6b; the responder also learns and sets peerid during execution.
In remaining calls to the Run algorithm, additional variables are set for each stage. Each
stage’s state type (type) is set when the stage begins, and the stage’s status is set to
active at the same time. The stage’s session identifier (sid) and state (st) are set within
the stage as soon as the values indicated in Table 2 have been derived. When the stage
computes its message key mk, it saves that as the session key (k) and sets the stage’s
status to accept.

4.2. Key Indistinguishability Experiment

Having defined a multi-stage key exchange protocol, we can now set up the experiment
for key indistinguishability.As is typical in key exchange securitymodels, the experiment
establishes long-term keys and then allows the adversary to interact with the system. The
adversary can direct parties to start sessions with particular medium-term keys and can
control the delivery of messages to parties (including modifying, dropping, delaying,
and inserting messages). The adversary can learn various long-term or per-session secret
information from parties via reveal queries and at any point can choose a single stage of
a single session to “test”. They are then given either the real session key from this stage,
or a random key from the same keyspace, and asked to decide which was given. If they
decide correctly, we say they win the experiment. This is formalized in the following
definition and corresponding experiment.

Definition 3. (Multi-stage key indistinguishability) Let� be a key exchange protocol.
Let nP,nM,nS,ns ∈ N. LetA be a probabilistic algorithm that runs in time polynomial
in the security parameter. Define

Advms-ind
�,nP,nM,nS,ns(A) = |2 · Pr

[
Expms-ind

�,nP,nM,nS,ns(A) = 1
]

− 1|

where the security experiment Expms-ind
�,nP,nM,nS,ns(A) is as defined in Fig. 8. Note nS and

ns are upper bounds on the number of sessions per party and number of stages per session
that can be established. We call an adversary efficient if it runs in time polynomial in
the security parameter.

A Formal Security Analysis of the Signal Messaging Protocol 1937

Note that Expms-ind includes the following global variables:

• b: a challenge bit
• tested = (u, i, s) or ⊥: recording the inputs to the query Test(u, i, s) or ⊥ if no
Test query has happened

Furthermore, Expms-ind extends the per-session state π i
u with the following experiment

variables:

• π i
u .rand[s] ∈ {0, 1}λ: random coins for π i

u’s sth stage
• π i

u .preid ∈ {1, . . . ,nM}: the index of the owner’s medium-term key to use
• π i

u .peerpreid ∈ {1, . . . ,nM}: the index of the alleged peer’s medium-term key
• π i

u .rev_session[s] ∈ {true, false}: whether RevSessKey(u, i, s) was called or
not; default false

• π i
u .rev_random[s] ∈ {true, false}: whether RevRand(u, i, s) was called or not;

default false
• π i

u .rev_state[s] ∈ {true, false}: whether RevState(u, i, s) was called or not;
default false

We are working in the post-specified peermodel, where the peer’s identity can be learned
by the actor during the execution of the protocol, by virtue of learning the peer’s public
key; and similarly for the peer’s semi-static key. (In Signal, the initiator will be activated
with the identifier of their intended peer, but the responder will only learn the identity
of their intended peer during protocol execution.) Certain aspects of the experiment
require the administrative index of the corresponding key, and thus, we assume that
π i

u .peerid is set to the corresponding identity upon π i
u .peeripk being set, and similarly

for the semi-static key index π i
u .peerpreid upon π i

u .peerprepk being set. (Recall that
experiment-only variables are in sans-serif.)

4.2.1. Session Identifiers

We define the session identifiers sid[s] for each stage [s] of Signal in Table 2. It is
important to note that these session identifiers only exist in our model, not in the proto-
col specification itself. We use them to we define restrictions on the adversary’s allowed
behaviour in our model, so that we can make precise security statements: we will gener-
ally restrict the adversary frommaking queries against any session with the same session
identifier as the Test session. If two sessions have equal session identifiers, we say that
they are “matching”.
The precise components of the session identifiers are crucial to our definition of

security: the more information is included in the session identifier, the more specific
the restriction on the adversary and hence the stronger the security model. Note that
our session identifiers include the public identity keys of both parties, which means
that our security notion enforces agreement on the identity keys. However, we note
that Signal’s key derivation or associated data of encrypted messages do not including
any application-level identities, such as a phone number. Our session identifiers mirror
this choice. This means that the specific type of Unknown Key Share (UKS) attack on
TextSecure [36] is not considered an attack in our model: the initiator Alice’s session
with Eve (with public identity key ipkE = ipkB) will have the same session identifier as
the responder Bob’s session with Alice.

1938 K. Cohn-Gordon et al.

Ta
bl
e
2.

V
al
ue
s
th
at
Si
gn
al
as
si
gn
s
to

th
e
pe
r-
st
ag
e
va
ri
ab
le
s
in

th
e
se
cu
ri
ty

m
od
el
.

St
ag
e

s
Se
ss
io
n
id

π
.s

id
[s]

In
pu

ts
ta
te

π
.s

t[s
]

Se
ss
io
n
ke
y

π
.k

[s]
O
ut
pu
ts
ta
te
(s
)

R
an
do
m
ne
ss

π
.r
an

d[s
]

0,
ty

pe
[0]

=
t
r
i
p
l
e

(t
r
i
p
l
e

:ip
ki ,

ip
kr

,
pr

ep
kr

,
⊥

m
kir 0,

0
π

.s
t[s
ym

-i
r:
0,

1]
←

ck
ir 0,
1

[ek
i ,

rc
hk

i 0
] †

ep
ki ,

rc
hp

ki 0
)

π
.s

t[a
sy
m
-r
i:1

]←
rk
1
,
[rc

hp
ki 0

] †
0,

ty
pe

[0]
=

t
r
i
p
l
e
+
D
H
E

(t
r
i
p
l
e
+
D
H
E

:ip
ki ,

ip
kr

,
pr

ep
kr

,
⊥

m
kir 0,

0
as

fo
r

ty
pe

[0]
=

t
r
i
p
l
e

[ek
i ,

rc
hk

i 0
] †

ep
ki ,

ep
re

pk
r
,
rc

hp
ki 0

)
[ep

re
kr

] ‡
as
ym

-r
i:1

si
d[0

]‖
(a
s
y
m
-
r
i

:rc
hp

ki 0
,
rc

hp
kr 1

)
rk
1

m
kri 1,

0
π

.s
t[s
ym

-r
i:1

,
1]

←
ck

ri 1,
1

[rc
hk

r 1
] ‡

π
.s

t[a
sy
m
-i
r:
1]

←
tm

p,
[rc

hk
r 1
] ‡

as
ym

-r
i:

x,
x

≥
2

si
d[a

sy
m
-i
r:

x
−

1]
rk

x
m

kri x,
0

π
.s

t[s
ym

-r
i:

x,
1]

←
ck

ri x,
1

[rc
hk

r x
] ‡

‖(
a
s
y
m
-
r
i

:rc
hp

kr x
)

π
.s

t[a
sy
m
-i
r:

x]
←

tm
p,

[rc
hk

r x
] ‡

as
ym

-i
r:

x,
x

≥
1

si
d[a

sy
m
-r
i:

x]
‖(

a
s
y
m
-
i
r

:rc
hp

ki x
)

tm
p

m
kir x,

0
π

.s
t[s
ym

-r
i:

x,
1]

←
ck

ri x,
1

[rc
hk

i x
] †

π
.s

t[a
sy
m
-r
i:

x
+

1]
←

rk
x+

1
,
[rc

hk
i x
] †

sy
m
-r
i:

x,
y,

x
≥

1,
y

≥
1

si
d[a

sy
m
-r
i:

x]
‖(

s
y
m
-
r
i

:y
)

ck
ri x,

y
m

kri x,
y

π
.s

t[s
ym

-r
i:

x
y

+
1]

←
ck

ri x,
y+

1
⊥

sy
m
-i
r:
0,

y,
y

≥
1

si
d[0

]‖
(s
y
m
-
i
r

:y
)

ck
ir 0,

y
m

kir 0,
y

π
.s

t[s
ym

-i
r:
0,

y
+

1]
←

ck
ir 0,

y+
1

⊥
sy
m
-i
r:

x,
y,

x
≥

1,
y

≥
1

si
d[a

sy
m
-i
r:

x]
‖(

s
y
m
-
i
r

:y
)

ck
ir x,

y
m

kir x,
y

π
.s

t[s
ym

-i
r:

x,
y

+
1]

←
ck

ir x,
y+

1
⊥

[..
.]†

de
no

te
s
so
m
et
hi
ng

th
at
ap
pl
ie
s
on

ly
to

th
e
in
iti
at
or
;[.

..
]‡

ap
pl
ie
s
on

ly
to

th
e
re
sp
on

de
r.
Se

e
Fi
g.

6
fo
r
de
fin

iti
on

of
al
lv

al
ue
s

A Formal Security Analysis of the Signal Messaging Protocol 1939

Fig. 8. Security experiment for adversary A against multi-stage key indistinguishability security of protocol
� .

4.3. Freshness

From a key exchange perspective, the novelty of Signal is the different security goals
of different stages’ session keys. The subtle differences between those security goals
are captured in the details of the threat model. Previously, we provided the adversary
with powerful queries with which it can break any protocol. We now define the so-called
freshness predicate fresh to constrain that power, effectively specifying the details of
the threat model.
Our goal when defining fresh is to describe the best security condition that might be

provable for each of Signal’s message keys based on the protocol’s design; here, “best”
is with respect to the maximal combinations of secrets learned by the adversary. That is,
we use the structure of the protocol to infer which attacks cannot possibly be prevented
and rule them out by restricting the adversary. Our goal is to prove that, working from
the design choices made, Signal indeed achieves the best it can (without introducing
further elements in the key derivation function).
We must define fresh separately for the initial stages and for subsequent ones, since

additional secrets are introduced in later asymmetric stages. In the initial stages, our
choices are based on Fig. 3. In the graph, the edges can be seen as the individual secrets
established between initiator and responder, on which the secrecy of the session keys
is based. If the adversary cannot learn the secret corresponding to one of these edges,
it cannot compute the session key. The adversary can learn the secret corresponding to
an edge if it can compromise one of the two endpoints; thus, if an adversary can learn,

1940 K. Cohn-Gordon et al.

e.g., the initiator A’s ikA and ekA, it can derive the secrets corresponding to all edges. A
similar observation can be made for the responder.
A vertex cover6 of Fig. 3 gives a way for the adversary to compute the relevant session

key directly. We can think of our freshness predicate as excluding all such vertex covers;
if all Diffie–Hellman (DH) pairs were included in the KDF, this would yield the standard
eCK freshness predicate.
In stages after the initial ones, we define modified freshness conditions to capture

Signal’s post-compromise security properties. These conditions are recursive: either the
stage was fresh already, or it becomes fresh through the introduction of new secrets.
The freshness predicate fresh for our experiment works hand-in-hand with a vari-

ety of sub-predicates (cleantriple, cleantriple+DHE, cleanasym-ir, cleanasym-ri,
cleansym-ir and cleansym-ri) which are highly specialized to Signal to capture the
exact type of security achieved in Signal’s different types of stages. In turn, each of these
sub-predicates is themselves based on a variety of underlying predicates (for example,
cleanEL, cleanEM, and cleanEE). These sub-predicates are introduced in Sects. 4.3.1,
4.3.2, and 4.3.3.

Definition 4. (Validity and freshness) Let s be a stage in the i th session at agent u, and
let τ = π i

u .type[s] be its type (e.g. triple, triple+DHE, …) as specified in Table 2.
It is valid if it has accepted and the adversary has not revealed either its session key
or the session key of any session with the same identifier, and fresh if it additionally
satisfies cleanness:

cleanτ (u, i, s) is defined in the following sections

valid(u, i, s) = (π i
u .status[s] = accept) ∧ ¬π i

u .rev_session[s]
∧ (∀ j : π i

u .sid[s] = π
j
π i

u .peerid
.sid[s] �⇒ ¬π

j
π i

u .peerid
.rev_session[s])

fresh(u, i, s) = valid(u, i, s) ∧ cleanτ (u, i, s)

fresh and its sub-clauses have access to all variables in the experiment (global, user,
session, and stage).

4.3.1. Session Setup Stage [0]
The session key derived from a triple key exchange is derived from the concatena-
tion of three Diffie–Hellman (DH) shared secrets, combined with one more DH shared
secret; thus, it will be secret as long as at least one of the four input secrets is. The
cleanness predicate in a stage of this type is thus the disjunction of several predicates,
each encoding the secrecy of one Diffie–Hellman (DH) pair: a long-term/medium-term
pair, an ephemeral/long-term pair, and an ephemeral/medium-term pair.7

6A vertex cover of a graph is a set of nodes incident to every edge.
7In our model, there are two ephemeral/medium-term pairs: (prepkB)ekA

and (prepkB)
rchkA

0 . Our security
model treats ekA and rchkA

0 as being revealed by the same query, so one predicate covers both terms.

A Formal Security Analysis of the Signal Messaging Protocol 1941

Definition 5. (cleantriple) Let

cleantriple(u, i, [0]) = cleanLM(u, i) ∨ cleanEL(u, i, 0) ∨ cleanEM(u, i, 0)

For a generic sub-clause cleanXY, our convention is that initiator’s key is of type X
and the responder’s key of type Y, where the possible types are L, M, and E for long-term
(ik), medium-term (prek), and ephemeral (ek) keys, respectively, as in Fig. 3.

For the session key derived from a triple+DHE key exchange, there is an additional
Diffie–Hellman (DH) shared secret from an ephemeral/ephemeral pair:

Definition 6. (cleantriple+DHE) Let

cleantriple+DHE(u, i, [0]) = cleantriple(u, i, [0]) ∨ cleanEE(u, i, 0, 0)

We now define each of the sub-clause of Definitions 5 and 6. Each of these sub-clause
is defined differently depending on whether it is evaluated for an initiator or responder
session.
For the long-term/medium-term sub-clause, we simply need to check that neither the

initiator’s long-term key nor the responder’s medium term-key has been revealed:

cleanLM(u, i) =
⎧⎨
⎩

¬rev_ltku ∧ ¬rev_mtk
π i

u .peerpreid
π i

u .peerid
π i

u .role = init

¬rev_ltkπ i
u .peerid ∧ ¬rev_mtk

π i
u .preid

u π i
u .role = resp

For sub-clauses involving ephemeral keys, we have to consider more subtle aspects.
For responder sessions, the difficult part is that the ephemeral key is now the peer’s,
not the session owner’s: to ensure that it is not known by the adversary, we have to
ensure first that it was actually generated by the intended peer (meaning that the peer
session must exist), and second that it was not subsequently revealed (identifying the
peer session using session identifiers); this will be what the clause cleanpeerE does.
For the ephemeral/long-term and ephemeral/medium-term sub-clauses, we check that

the initiator’s ephemeral key and the responder’s long-term or medium-term key has not
been revealed, using cleanpeerE to address the issue in the previous paragraph:

cleanEL(u, i, [0]) =
{

¬π i
u .rev_random[0] ∧ ¬rev_ltkπ i

u .peerid π i
u .role = init

cleanpeerE(u, i, [0]) ∧ ¬rev_ltku π i
u .role = resp

cleanEM(u, i, [0]) =
⎧⎨
⎩

¬π i
u .rev_random[0] ∧ ¬rev_mtk

π i
u .peerpreid

π i
u .peerid

π i
u .role = init

cleanpeerE(u, i, [0]) ∧ ¬rev_mtk
π i

u .preid
u π i

u .role = resp

When the session π i
u is the responder, if the medium-term key of the responder is

corrupted, then we do not permit an attack impersonating Alice to Bob: since the only
randomness in the initial key exchange phase is from the initiator (and there is no static-
static Diffie–Hellman (DH) secret), such an attack will succeed, and hence an adversary
that corrupts the medium-term key of the responder can easily impersonate Alice to Bob.

1942 K. Cohn-Gordon et al.

For the ephemeral/ephemeral sub-clauses, we check that neither party’s ephemeral
key has been revealed, again using cleanpeerE to ensure that the peer session actually
exists:

cleanEE(u, i, s, s′) =
{

¬π i
u .rev_random[s] ∧ cleanpeerE(u, i, s′) π i

u .role = init

cleanpeerE(u, i, s) ∧ ¬π i
u .rev_random[s′] π i

u .role = resp

Since we reveal randomness instead of specific keys, this final predicate applies to
both the ephemeral keys and the ratchet keys, a fact which we shall use later when
defining cleanness of asymmetric stages.
The cleanpeerE(u, i, s) sub-clause that we relied on to deal with the issue of the

ephemeral key at the peer is given below. However, there is a special case: a session
π i

u with π i
u .role = init, in stage s = 0 with type[0] = triple+DHE. Specifically,

we need to confirm an honest responder exists that has generated the ephemeral prekey
eprepkr that was received by π i

u . The reason why we treat this separately is that all
other ephemeral–ephemeral (i.e. ratchet) keys are separated into distinct stages, which
is not the case for stage s = 0 with type[0] = triple+DHE. In the other cases, the
cleanpeerE(u, i, s) predicate determines whether there exists a partner session that has
generated the received ephemeral key rchpki

x−1 from the previous stage, andwhether that
rchki

x−1 has been compromised via a RevRand query. This is trickier to determine for
the initial stage, since the session identifier sid is set when the session keys are derived,
and thus we cannot use sid to determine if an honest session π

j
π i

u .peerid
.role = resp has

generated the ephemeral prekey without also requiring that the responder has received
the first message from the initiator. Instead, we use rand[s] to determine whether there
exists an honest responderπ j

π i
u .peerid

that has generated the ephemeral prekey eprepk j that

the initiator has received. For readability reasons, in what follows we denote the public
key eprepk associated with the ephemeral randomness eprek j = π

j
π i

u .peerid
.rand[s] as

eprepk j (i.e. eprepk j = geprek j
). We also use x ⊂ y to denote “x is a substring of y”.

cleanpeerE(u, i, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ j : eprepk j ⊂ π i
u .sid[s] π i

u .role = init, and

∧
(
∀ j : eprepk j ⊂ π i

u .sid[s] �⇒ type[0] = triple+DHE

¬π
j

π i
u .peerid

.rev_random[s]
)

∃ j : π i
u .sid[s] = π

j

π i
u .peerid

.sid[s]
∧

(
∀ j : π i

u .sid[s] = π
j

π i
u .peerid

.sid[s] �⇒ otherwise

¬π
j

π i
u .peerid

.rev_random[s]
)

Excluded attacks. Recall that a vertex cover of Fig. 3 gives an attack which we rule out.
Any cover must include one of prekB and ekA to meet the edge between them, so the only
(minimal) vertex covers for a triple handshake are the full state of B (prekB, ikB), the
full state of A (ekA, ikA), or the pair (prekB , ekA). The former two are trivial: an agent
must be able to compute its own session key, so learning all their secrets also allows the
adversary to compute it. The final pair exists because of the lack of an edge in Signal

A Formal Security Analysis of the Signal Messaging Protocol 1943

between ikA and ikB and means that an adversary who learns prekB and ekA can learn
the session key. In particular, since the ephemeral key is not authenticated, the adversary
can generate their own ekA and successfully impersonate A. This is the key compromise
impersonation (KCI) attack of [45]; it is ruled out in our model because cleantriple is
false if both prekB and ekA have been revealed.
Since a vertex cover for a triple+DHE handshake must be a superset of the above,

the only non-trivial one is again (prekB , ekA); this means that the KCI attack succeeds
even against a triple+DHE handshake.

4.3.2. Asymmetric Stages[asym-ir:x]/[asym-ri:x]
In Signal, keys are updated via either symmetric or asymmetric ratcheting. Asymmetric
ratcheting introduces new Diffie–Hellman (DH) shared secrets into the state, whereas
symmetric ratcheting solely applies a KDF to existing state. During asymmetric ratch-
eting, there are actually two substages, in which keys with slightly different properties
are derived.
In the first substage, of type [asym-ri:x], the parties apply a KDF to two pieces

of keying material: a Diffie–Hellman (DH) shared secret derived from both parties’
ratcheting public keys (the initiator’s previous ratcheting key and the responder’s new
ratcheting key), and the root key derived at the endof the previous asymmetric stage.Keys
from this substage should be secure if either of the two pieces is unrevealed. However,
there are two ways that the root key from the end of the previous asymmetric stage could
be considered revealed: either by revealing the state passed from one stage to the next
(captured by the cleanstate sub-clause following Definition 7) or by the previous stage
itself been compromised, which is why we have a conjunction.

Definition 7. (cleanasym-ri) Let sri = [asym-ri:x] and s′
ir = [asym-ir:x − 1].

Define

cleanasym-ri(u, i, sri) =
⎧⎨
⎩
cleanEE(u, i, [0], [asym-ri:1]) ∨

(
cleanstate(u, i, sri) ∧ clean

π i
u .type[0](u, i, [0])

)
x = 1

cleanEE(u, i, sri , s′
ir) ∨

(
cleanstate(u, i, sri) ∧ cleanasym-ir(u, i, s′

ir)
)

x ≥ 2

Note that to capture that the state passed from one stage to the next is not revealed,
we use the following clause, which considers revealing the state at the session or at any
of its peers, since those peers would have the same state:

cleanstate(u, i, s) = ¬π i
u .rev_state[s] ∧

(
∀ j : π i

u .sid[s] = π
j
π i

u .peerid
.sid[s] �⇒ ¬π

j
π i

u .peerid
.rev_state[s]

)

In the second asymmetric ratchet substage, of type [asym-ir:x], the parties effectively
apply a KDF to two sources of keying material: the temporary value tmp, computed
during the previous substage, and a Diffie–Hellman (DH) shared secret derived from
one party’s previous ratcheting public key and the other’s new ratcheting public key.
Keys from this substage should be secure if at least one of the two sources is unrevealed.

1944 K. Cohn-Gordon et al.

Definition 8. (cleanasym-ir) Let sir = [asym-ir:x] and sri = [asym-ri:x]. Define

cleanasym-ir(u, i, sir) = cleanEE(u, i, sir , sri) ∨
(
cleanstate(u, i, sir) ∧ cleanasym-ri(u, i, sri)

)

Initially, it may not be clear why we define cleanasym-ir and cleanasym-ri
separately—indeed, the definitions appear almost identical. This separation is due to
how we define stages, more specifically when per-stage randomness is generated, and
when the randomness is used. Informally, when the initiator begins an asymmetric stage
[asym-ir:x], the initiator generates its per-stage randomness (i.e. rchki

x) and uses the
responder’s previous ratchet key, which was generated in the stage [asym-ri:x] (i.e.
rchkr

x) with the same stage index x . However, when the responder begins an asymmetric
stage, the stage index is incremented such that the new stage is [asym-ri:x + 1], and the
responder uses the initiator’s previous ratchet key, generated during stage [asym-ir:x].
This difference between which stage’s ephemeral randomness is considered for the
cleanness predicate is why we separate the asymmetric cleanness definitions.
Together, the cleanasym-ir and cleanasym-ri clauses capture the “future secrecy” or

“post-compromise security” goal of Signal: if a device had been compromised at some
prior time, (i.e., the party’s long-term key, past states and keys are compromised, and
thus the second disjuncts are not satisfied), but the current ephemeral keys of both parties
are uncompromised and honest (the cleanEE sub-clause is satisfied), then the session
is clean. Similarly, vice versa the session can be clean even if the current ephemeral
exchange is compromised, just so long as the previous prior secrets are uncompromised.
This captures post-compromise security.

4.3.3. Symmetric Stages [sym-ir:x, y] and [sym-ri:x, y]
For stages with only symmetric ratcheting, new session keys should be secure only if the
state is unknown to the adversary: this demands that all previous states in this symmetric
chain are uncompromised, since later keys in the chain are computable from earlier states
in the chain. Thinking recursively, this means that the previous stage’s key derivation
should have been secure and that the adversary has not revealed the state linking the
previous stage with the current one.
While the symmetric sending and receiving chains derive independent keys and are

triggered differently during Signal protocol execution, their security properties are iden-
tical and captured by the following predicate; the different forms of the predicate are
due to needing to properly name the “preceding” stage. There are different freshness
conditions depending on whether the symmetric stage is used for a message from initia-
tor to responder or vice versa. Moreover, the symmetric stages arising from the initial
handshake (x = 0) and from subsequent asymmetric stages (x > 0) are subtly different.

Definition 9. (cleansym) Writing s = [sym-ir:x, y],

cleansym-ir(u, i, s) = cleanstate(u, i, s) ∧

⎧⎪⎪⎨
⎪⎪⎩

clean
π i

u .type[0](u, i, [0]) x = 0, y = 1

cleanasym-ir(u, i, [asym-ir:x]) x ≥ 1, y = 1

cleansym-ir(u, i, [sym-ir:x, y − 1]) x ≥ 0, y ≥ 2

A Formal Security Analysis of the Signal Messaging Protocol 1945

There is no stage of type sym-ri with x = 0, so (writing now s = [sym-ri:x, y])

cleansym-ri(u, i, s) = cleanstate(u, i, s) ∧
{
cleanasym-ri(u, i, [asym-ri:x]) x ≥ 1, y = 1

cleansym-ri(u, i, [sym-ri:x, y − 1]) x ≥ 1, y ≥ 2

We may write cleansym to denote cleansym-ir or cleansym-ri where it is clear which
one we mean.

Excluded attacks. Since no additional secrets are included in message keys derived from
symmetric ratchet stages, these predicates simply require that the adversary has not
compromised any previous state along the chain: neither the asymmetric stage which
created the chain, nor any of the intermediate symmetric stages, are permitted targets for
queries. In other words, we exclude the attack in which the adversary corrupts a chain
key and computes subsequent message keys from it.

5. Security Analysis

In this section, we prove that Signal is a secure multi-stage key exchange protocol in the
language of Sect. 4, under standard assumptions on the cryptographic building blocks.

The algorithms comprising the Signal protocol are given in Definition 1, and we
summarize some key points below.
We have made a few minor reorganizations in Fig. 6 compared to the actual imple-

mentation of Signal.We consider Signal to generate the first message keys for each chain
at the same time that it initializes the chain, allowing us to consider these message keys
as the session keys of the asymmetric stages. Similarly, we consider Bob to send his own
one-time prekey eprepkB instead of relaying it via the server. We mark these extra steps
in Dark red in Fig. 6.
KeyGen and MedTermKeyGen consist of uniform random sampling from the group.

Activate depends on the invoked role. Our prekey reorganization described above means
that the roles of initiator and responder are technically reversed: although intuitively
Alice initiates a session in our presentation, in fact Bob sends the first message, namely
his prekeys (first right-to-left flow of Fig. 6b. Thus, the activation algorithm for the
responder (Bob) outputs a single one-time prekey and awaits a response. The activation
algorithm for the initiator (Alice) outputs nothing and awaits incoming prekeys.
Run is the core protocol algorithm. It admits various cases, which we briefly describe.
If the incoming message is the first, Run builds a session as described previously: for
Alice, it operates as in the left side of Fig. 6b and outputs a message containing epkA;
for Bob, it operates as in the right side of Fig. 6b and outputs nothing.

After that, there are two cases: Run is either invoked to process an incoming message
or to encrypt an outgoing one. We distinguish between incoming ratchet public keys
(causing asymmetric updates) and incoming messages (causing symmetric updates).

(i) Outgoing message. Perform a symmetric sending update, modifying the current
sending chain key and using the resulting message key as the session key (left side
of Fig. 6c).

1946 K. Cohn-Gordon et al.

(ii) Incoming ratchet public key. If this ratchet public keyhas not beenprocessed before,
perform an asymmetric update using it to derive new sending and receiving chain
keys as in Fig. 6d. Advance both chains by one step, and output the message keys
as the session key for the two asymmetric substages as indicated in the figure.

(iii) Incoming message. Use the message metadata to determine which receiving chain
should be used for decryption, and which position the message takes in the chain.
Advance that chain (according to the right side of Fig. 6c) as many stages as
necessary (possibly zero), storing for future use any message keys that were thus
generated. Return as the session key the next receiving message key.

In the Signal protocol, old but unused receiving keys are stored at the peer for an
implementation-dependent length of time, trading off forward security for transparent
handling of outdated messages. This of course weakens the forward secrecy of the keys,
though their other security properties remain the same. We choose not to model this
weakened forward secrecy guarantee, passing only the latest chaining key from stage to
stage.
With these definitions, we can consider the advantage of an adversary in a multi-stage

key exchange security game against our model of the Signal protocol:

Theorem 1. The Signal protocol is a secure multi-stage key exchange protocol under
the GDH assumption and assuming all KDFs are random oracles. That is, if no efficient
adversary can break the assumptions with non-negligible probability, then no efficient
adversary can win the multi-stage key indistinguishability security experiment for Signal
(and thereby distinguish any fresh message encryption key from random) with non-
negligible probability.

Proof (sketch). We give here a proof sketch. The full details and definitions of the secu-
rity assumptions can be found in the Appendix. The proof considers of each stage type
and sub-clause exhaustively and is structured using the sequence-of-games technique.
A high-level overview of the proof with its main game sequences and case distinctions

is given in Appendix in Fig. 9. In addition, the full proof is given in “Appendix B.3”.
Signal has many different types of stages, and we analyse each of them separately.

Formally, we start with a sequence of generic game hops which apply to all cases, ruling
out, for instance, the low-probability event that two randomly generated Diffie–Hellman
(DH) keys collide. We then guess which session the adversary will choose as the Test
session; since there can be only polynomially many sessions, this guess succeeds with
non-negligible probability. This, we emphasize, is the source of the looseness in the
proof.
We then make a case distinction based on the stage type of the Tested session. Each

stage type has its own cleanness predicate, and we deal with them in subcases. For
example, if the adversary issues a query Test(u, i, [0]), then we are analysing stage
[0], and if the stage type is triple, then we consider in turn the subcases where
cleanLM(u, i), cleanEL(u, i, [0]), or cleanEM(u, i, [0]) are true.
For each subcase, we perform an additional game hop, relying on one of the security

assumptions in the statement of the theorem. The initial game will be the standard multi-
stage indistinguishability game ms-ind, and in the final games the session key will be

A Formal Security Analysis of the Signal Messaging Protocol 1947

replaced by a uniformly random value. By summing up the advantages along the way,
we can obtain an overall bound on the success probability of the adversary.
The game hops in each of the subcases all build on a core type of reduction to GDH:

the simulator queries for challenge values from the GDH oracle, inserting them into
the game in place of certain Diffie–Hellman (DH) public values and simulating the
responses. We then intercept all adversarial calls to the random oracle, extracting the
value taking the place of the GDH solution, and apply the DDH oracle to decide whether
this value is indeed a solution. If it is, then the simulator has broken GDH; if not, we
continue the simulation. We will show that replacing the keys is not detectable by the
adversary and that violations of key indistinguishability imply solutions of the GDH
challenge.
The challenger does not know in advance which adversary behaviour it is up against—

only at the end of the game will the challenger know which of the clean predicates were
satisfied. That is, the adversary might decide on the fly which session to Test and which
clean predicate to satisfy. As such, no global reduction can be given. This is not a
problem: in our proof, we are ultimately just ruling out classes of attacks. If an attack
exists, it corresponds to some specific adversary, which is covered by one of our cases.
Cases. We begin by considering the case that the Test(u, i, s) query was issued on the
first stage (s = [0]). We break this up into two separate cases:

(i) the initial key exchange had stage type triple (so three separate pairs of DH
shared secrets were used to compute the master secret ms), or

(ii) the initial key exchange had stage type triple+DHE (so four separate pairs of
DH shared secrets were used to compute the master secret ms).

Case 1: triple. In the first case, where Test(u, i, [0]) and π i
u .type[0] = triple, we

see by Definition 5 that the following condition must be satisfied:

cleanLM(u, i) ∨ cleanEL(u, i, [0]) ∨ cleanEM(u, i, [0])

Case 2: triple+DHE. In the second case, where Test(u, i, [0]) and π i
u .type[0] =

triple+DHE,we seebyDefinition6 that there is an additional disjunctcleanEE(u, i, [0]),
and we must have

cleanLM(u, i) ∨ cleanEL(u, i, [0]) ∨ cleanEM(u, i, [0]) ∨ cleanEE(u, i, [0])

We consider each of these cases in turn, and by a game-hopping argument replace the
relevant keys by random values, allowing us subsequently to replace the session keys
with random values.
Case 3: Asymmetric ratchet, initial stage. Next, we consider the security of the case
that the Test(u, i, s) query was issued on the initial responder-to-initiator asymmetric
stage s = [asym-ri:1]. We partition this into two cases corresponding to Definition 7:
either the adversary has not issued queries that would break the cleanness of the root key
from the first stage s = [0]; or the adversary did not inject malicious Diffie–Hellman
(DH) shares in the ephemeral shares used in the stage (which in particular were generated

1948 K. Cohn-Gordon et al.

in stage s = [0]). That is, we consider the case that Test(u, i, s = [asym-ri:1]) where
π i

u .type[s] = asym-ri and apply Definition 7 to conclude that

(
clean

π i
u .type[0](u, i, [0]) ∧ cleanstate(u, i, [asym-ir:1])

)
∨ cleanEE(u, i, 0, 0)

In a similar fashion to the argument for the initial handshake, we replace certain Diffie–
Hellman (DH) values by values from a GDH challenger, reducing indistinguishability
of the session key of this stage to hardness of GDH.
Case 4: Asymmetric ratchet, non-initial stages.We continue considering the security
of the case that the Test(u, i, s) query was issued in the x th asymmetric responder-
to-initiator stage s = [asym-ri:x]. That is, we consider the case that Test(u, i, s =
[asym-ri:x]), where x ≥ 2 and π i

u .type[s] = asym-ri. By Definition 7, we conclude:

(
cleanasym-ri(u, i, [asym-ri:x − 1]) ∧ cleanstate(u, i, [asym-ir:x])

)
∨ cleanEE(u, i, x − 1, x − 1)

and a similar argument holds.
We must also consider the case that the Test query was issued against an asymmetric

stage of type asym-ir, i.e. a stage used to derive keys for the initiator to encrypt for
the responder. The argument in this case is analogous but the cleanness predicates are
subtly different and again vary depending on whether the stage is the first of its type.
However, the core argument remains the same: we replace certain keys in the Tested
session with values from the GDH challenger, in such a way that distinguishing session
keys from random would give a GDH advantage.
Case 5: Symmetric ratchet. Finally, we consider symmetric stages. We partition into
two cases:

(i) the first symmetric stage y = 1, where security follows from the asymmetric stage
before it (which could be either the initial handshake or an asymmetric stage)

(ii) a later symmetric stage y > 1, where security follows from cleanness of the
previous symmetric update

Conclusion. The theorem follows by summing probabilities. �

6. Limitations

As a first analysis of a complex protocol, we have chosen (some) simplicity over a full
analysis of all of Signal’s features. We hope that our presentation and model can serve
as a starting point for future analyses.
We discuss here some of the features included in Signal which we have explicitly

chosen not to model and observe limitations of our results.

Protocol Components

Non-Signal library components. The open-source libraries contain various sections of
code which are not considered part of the Signal protocol. For example, the “header
encryption” variant of the Double Ratchet is used by Pond and included in the reference

A Formal Security Analysis of the Signal Messaging Protocol 1949

implementation, but not used by Signal itself. Likewise, there is support for online key
exchanges instead of via the prekey server. As these components are not intended to be
part of the Signal protocol, we do not analyse them.
Out-of-band key verification. To reduce the trust requirements on the prekey server,
Signal supports a fingerprint mechanism for verifying public keys through an out-of-
band channel.We simply assume that long-termandmedium-termpublic keydistribution
is honest and do not analyse the out-of-band verification channel.
Same key for Ed25519 signing and Curve25519 DH. Signal uses the same key ik for
Diffie–Hellman (DH) agreement and for signing the medium-term prekeys.8 [27,59]
prove security of a similar scheme under the Gap-DH assumption, effectively showing
that the signatures can be simulated using the hashing random oracle. We conjecture a
similar argument could apply here, but do not prove it; instead, we omit the signatures
from consideration and enforce authentication of the prekeys in the game. This enforced
authentication means we do not capture the class of attacks in which the adversary
corrupts an identity key and then inserts a malicious signed prekey.
Out-of-order decryption. To decrypt out-of-order messages, users must store message
keys until the messages arrive, reducing their forward security. As discussed in Sect. 5,
we do not consider this storage.
Simultaneous session initiation. Signal has a mechanism to deal silently with the case
that Alice and Bob simultaneously initiate a session with each other. Roughly, when
an agent detects that this has happened, they deterministically choose one party as the
initiator (e.g. by sorting identity public keys and choosing the smaller) and then complete
the session as if the other party had not acted. This requires a certain amount of trial and
error: agents maintain multiple states for each peer and attempt decryption of incoming
messages in all of them. We do not consider this mechanism.

Other Security Goals and Threats

Our model describes key indistinguishability of two-party multi-stage key exchange
protocols. There are other security and functionality goals which Signal may address
but which we do not study, including: group messaging properties,9 message sharing
across multiple devices, voice and video call security, protocol efficiency (e.g. 0-round-
trip modes), privacy, and deniability.
Implementation-specific threats. Wemake various assumptions on the components used
by the protocol. In particular, we do not consider specific implementations of primitives
(e.g. the particular choice of curve), instead assuming standard security properties. We
also do not consider side-channel attacks.
Tightness of the security reduction. As pointed out in [2], a limitation of conventional
game hopping proofs for AKE protocols is that they do not provide tight reductions. The
underlying reason is that the reductions depend on guessing the specific party and session

8This is done in practice by reinterpreting the Curve25519 point as an Ed25519 key and computing an
EdDSA signature.

9The implementation of group messaging is not specified at the protocol layer. If it is implemented using
multiple pairwise sessions, its security may follow in a relatively straightforward fashion—however, there are
many other possible security properties which might be desired, such as transcript consistency.

1950 K. Cohn-Gordon et al.

under attack. In the case of a widely deployed protocol with huge amounts of sessions,
such as Signal, this leads to an extremely non-tight reduction. While [2] develops some
new AKE protocols with tight reductions, their protocols are non-standard in their setup
and assumptions. In particular, there is currently no known technique for constructing
a tight reduction that is applicable to the Signal protocol. As a result, our analysis has
a significantly large factor in the non-tightness of our security reduction. Specifically,
we lose at minimum a factor of (n2P · nS) to our reduction to the Gap Diffie–Hellman
assumption. Unfortunately, attempting to instantiate the Signal protocol with parameter
sizes that our analysis suggests would be secure would not be compatible with parameter
sizes that Signal implementations currently use. Indeed, implementing Signal with such
parameter sizeswould incur significantlymore computational cost, a difficult proposition
for mobile devices. One might argue about the practical relevance of such an analysis;
however, the current proof does provide quantitative statements about the security of the
Signal protocol, as well as a qualitative indicator of the general soundness of the design;
moreover, the structure of the proof itself may be useful in future research as a starting
point to increase the tightness of the security reduction.

Application Variants

Popular applications using Signal tend to change important details as they implement
or integrate the protocol and thus merit security analyses in their own right. For exam-
ple, WhatsApp implements a re-transmission mechanism: if Bob appears to change his
identity key, clients will resend messages encrypted under the new value. Hence, an
adversary with control over identity registration can disconnect Bob and replace his key,
and Alice will resend the message to the adversary.

7. Conclusions and Future Work

In this work, we provided the first formal security analysis of the cryptographic core of
the Signal protocol.While any first analysis for such a complex object will be necessarily
incomplete, our analysis leads to several observations.
First, our analysis shows that the cryptographic core of Signal provides useful security

properties. These properties,while complex, are encoded in our securitymodel,whichwe
prove that Signal satisfies under standard cryptographic assumptions. Practically speak-
ing, they imply secrecy and authentication of the message keys which Signal derives,
even under a variety of adversarial compromise scenarios such as forward security (and
thus “future secrecy”). If used correctly, Signal could achieve a form of post-compromise
security, which has substantial advantages over forward secrecy as described in [23].
Our analysis has also revealed many subtleties of Signal’s security properties. For

example, we identified six different security properties for message keys (triple,
triple+DHE, asym-ir, asym-ri, sym-ir, and sym-ri).
One can imagine strengthening the protocol further. For example, if the random num-

ber generator becomes fully predictable, it may be possible to compromise communi-
cations with future peers. We have pointed out to the developers that this can be solved

A Formal Security Analysis of the Signal Messaging Protocol 1951

at negligible cost by using constructions in the spirit of the NAXOS protocol [51] or
including a static–static Diffie–Hellman (DH) shared secret in the key derivation.
We have described some of the limitations of our approach in Sect. 6. Furthermore,

the complexity and tendency to add “extra features” make it hard to make statements
about the protocol as it is used. Examples include the ability to reset the state [23],
encrypt headers, or support out-of-order decryption. Cohn-Gordon and Cremers [22]
discuss these limitations in more detail.
As with many real-world security protocols, there are no detailed security goals spec-

ified for the protocol, so it is ultimately impossible to say if Signal achieves its goals.
However, our analysis proves that several standard security properties are satisfied by
the protocol, and we have found no major flaws in its design, which is very encouraging.
Our security model itself is quite general and is well-suited for the analysis of other

messaging protocols. In particular, we see our novel extensions to multi-stage key-
exchange models that capture medium-term keys to be applicable to communication
protocols outside of Signal. This is in comparison with our freshness definition, which
is tailored specifically to the structure of the Signal protocol. Our presentation of the
Signal protocol itself as well as the approach taken in our analysis may be of inde-
pendent interest and help guide future investigation of the Signal protocol, and other
cryptographic protocols of similar complexity.

Acknowledgements

The authors acknowledge helpful discussions with Marc Fischlin and Felix Günther and
valuable comments from Chris Brzuska and Trevor Perrin. Thanks to Xavier Bultel for
carefully reading through the proof. Thanks to Mang Zhao for identifying a missing
DH operation in the session setup phase. K. C-G. and L.G. were supported by the
Oxford CDT in Cyber Security. B.D was supported by EPSRC Grant EP/L018543/1.
D.S. was supported by Australian Research Council (ARC) Discovery Project Grant
DP130104304,Natural Sciences andEngineeringResearchCouncil ofCanada (NSERC)
Discovery Grant RGPIN-2016-05146, and NSERC Discovery Accelerator Supplement
Grant RGPIN-2016-05146.

Appendix A. On Hardness Assumptions and the Random Oracle Model (ROM)

When performing a game-hopping security proof in an extended Canetti–Krawczyk-
style model, after each hop we must show that the resulting game is similar to the
original. If certain values have been changed, the queries whose results differ must be
simulated in an indistinguishable manner.
In particular, the eCK family of models all contain a query RevSessKey which reveals
the session key derived by a targeted session. This models for example cryptanalysis of
a large volume of encrypted traffic, or the ability to read certain locations in memory.
When replacing certain Diffie–Hellman (DH) keys with random values, we must ensure
that the resulting game is similar to its original. For protocols using only ephemeral
Diffie–Hellman (DH) values gx and gy to compute session keys from gxy , replacing gx

1952 K. Cohn-Gordon et al.

and gy by random does not affect other sessions, and thus other RevSessKey queries
are not affected. However, for more complex protocols (such as NAXOS and HMQV)
in which the long-term keys are also included in the session key derivation, this game
hop becomes more complex. Specifically, when the long-term keys are modified, all
RevSessKey queries are affected, and their simulation is no longer trivial.
There is a proof obligation to show that the simulation of these queries does not allow
an adversary to distinguish the two games. One way to do this is by using Gap-Diffie–
Hellman (DH) in the random oracle model, assuming that the KDF is a random oracle.
In the simulation, whenever the adversary makes a query to the random oracle, the
challenger tests the relevant part of the argument using the DDH oracle to determine
whether the adversary has successfully derived theDiffie–Hellman (DH) secret. If so, the
simulation can terminate and the challenger uses this value in the Gap-Diffie–Hellman
(DH) game. This is the approach we take.
There are known issues with the ROM. An alternative to Gap-Diffie–Hellman (DH) is to
take a PRF-ODH (pseudorandom function with oracle Diffie–Hellman (DH)) assump-
tion, which effectively provides an oracle for session key computations and (roughly)
asserts that it is hard to solve computational Diffie–Hellman (DH) even with access to
the oracle. The game hop then takes the computational Diffie–Hellman (DH) values
from the PRF-ODH game and answers RevSessKey queries by querying the oracle.
The probability jump over the game is thus bounded by the PRF-ODH advantage.
There is a further complication in the case of Signal. In most normal Diffie–Hellman
(DH) protocols, there is only one method to compute a session key given a collection of
secret inputs; such a method could be called a “combinator”. For example, in NAXOS
the combinator hashes one long-term key and uses that as a Diffie–Hellman (DH) expo-
nential. In Signal, on the other hand, there aremany different combinators, and the oracle
we use must be sufficiently flexible to simulate all of them. Thus, we have the following
options:

(i) Define a PRF-ODH game parameterized by the combinator K used to assemble
secrets into the arguments to the KDF. For each different type of key in Signal,
assume hardness of this game and use this assumption to justify a game hop.

(ii) Assume that the KDF is a random oracle, and justify the game hop directly from
the ROM and Gap-Diffie–Hellman (DH).

We choose the latter option, since we believe that the former hardness assumption is not
necessarily justified. However, we conjecture that a carefully formulated PRF-ODH
game could be proven hard in the ROM and therefore that one proof could effectively
take either option depending on the reader’s opinions. We leave such a game for future
work.

Definitions of Hardness Assumptions

Our proof of security relies on standard cryptographic hardness assumptions related to
Diffie–Hellman (DH) key exchange. Let G = 〈g〉 be a cyclic group of prime order q

generated by g, let α, β, γ
$← Zq , and let ODDH be an efficient black-box algorithm

(oracle) that, on input (gx , gy, gz), outputs 1 if gz = gxy and 0 otherwise. For any

A Formal Security Analysis of the Signal Messaging Protocol 1953

algorithm D let

εDDH(D):=
∣∣∣∣Pr

[
D(G, q, g, gα, gβ, gαβ) = 1 : α, β

$← Zq

]

− Pr

[
D(G, q, g, gα, gβ, gγ) = 1 : α, β, γ

$← Zq

] ∣∣∣∣

εCDH(D):=Pr

[
D(G, q, g, gα, gβ) = gαβ : α, β

$← Zq

]

εGDH(D):=Pr

[
DODDH(G, q, g, gα, gβ) = gαβ : α, β

$← Zq

]

We make use of the following cryptographic hardness assumptions:

(i) Decisional Diffie–Hellman (DDH): it is hard to distinguish (gα, gβ, gαβ) from
(gα, gβ, gγ), i.e., εDDH(D) is negligible in log(q) for any efficient D.

(ii) Computational Diffie–Hellman (CDH): it is hard to compute the value gαβ from
(gα, gβ), i.e., εCDH(D) is negligible in log(q) for any efficient D.

(iii) GapDiffie–Hellman (GDH) [58]: it is hard to compute the value gαβ from (gα, gβ)

even when given black-box access to a DDH oracle, i.e., εGDH(D) is negligible in
log(q) for any efficient D.

We also make use of the random oracle model (ROM), instantiating all KDFs as black
boxes which return a uniformly random output for any given input.

Appendix B. Security Proof

The proof considers different cases corresponding to the possible behaviour of an adver-
sary. We first describe modifications to the Signal protocol made for our proof in B.1.
We then recall the main theorem and provide the actual proof in B.3.

B.1. Protocol Modifications for Key Indistinguishability

In order to apply a Bellare–Rogaway-style key indistinguishability model for key
exchange, in our proof we make two modifications to the Signal protocol. First, we
remove all data messages from the protocol, considering only the key exchange mes-
sages. Second, we consider handshake messages as being sent in plaintext instead of
inside the associated data of the AEAD encryption of a message. Without this change,
an adversary could distinguish a tested message key from random by using it to verify
the authentication of a handshake message.

B.2. Proof Structure Overview

Security in this sense means that no efficient adversary can break the multi-stage key-
indistinguishability game for the two-party protocol Signal, parameterized by freshness
condition fresh, with non-negligible probability. Suppose for contradiction that such an

1954 K. Cohn-Gordon et al.

Fig. 9. High-level overview of the proof structure. Games are identified by G0, G1, …, and main case
distinctions by C1, C2, …; G0 denotes the multi-stage security experiment from Sect. 4.2. In the PDF version
of this document, such identifiers can be clicked to jump to the corresponding part of the proof .

adversaryA exists. Whatever the behaviour of the adversary, trivially (by the definition
of the security experiment in Fig. 8) it can only succeed when the Tested session [s] is
fresh. By Definition 4, this means that the Test(u, i, s) query satisfies:

(i) π i
u .status[s] = accept,

(ii) ¬π i
u .rev_session[s],

(iii) for all j such that π i
u .sid[s] = π

j
v .sid[s], ¬π

j
v .rev_session[s], and

(iv) cleanπ i
u .type[s](u, i, s)

where v denotes π i
u .peerid, the identity of the intended peer to the Tested session, and

cleanπ i
u .type[s](u, i, s) is a cleanness clause as referenced in Definition 4 and subsequent

definitions, further restricting the adversary’s behaviour. In the following overview, we
consider the case that the Tested session is the initiator; the responder is analogous.

High-Level Overview of the Case Distinction

A high-level overview of the proof with its main game sequences and case distinctions
is given in Figure 9.

A Formal Security Analysis of the Signal Messaging Protocol 1955

Stage 0. We start by proving the security of the stage 0 key that is output by the triple
key-exchange during session setup. We show this via taking cases over the disjuncts in
the cleantriple clause—over the different ways the session could be clean—noting
that one of cleanLM(u, i), cleanEL(u, i, 0), cleanEM(u, i, 0) must be upheld.
We bound each of these probabilities in turn by the advantage of reduction algorithms
to the security experiments of our primitives—to DH security using the GDH and ROM
assumptions.

Asymmetric stages. Next, we consider the security of a stage s key such that stage s
has stage type asym-ir or asym-ri. Again, we take cases over the different ways
to satisfy the cleanness predicate, depending on the type of the stage. Most cases are of
the form cleanEE, and for these we obtain a probability bound by replacing the Diffie–
Hellman (DH) ratchet keys and shared secrets with values from a GDH challenger.
The only case not of this form involves cleanstate, which describes a scenario where

both recent ratchet keys were compromised but the previous stage was still secure.
Secrecy here is intuitive, and the bound follows from an inductive argument: if an
adversary could win in this manner, then assuming GDH and ROM security, there is an
adversary which could win against the previous stage.
Symmetric stages. Finally, we consider the security of stage s keys of type sym. Here,
there is no disjunction in the cleanness predicate and hence only one case to consider.
We replace the keys used to initialize the current sending chain with uniformly random
values, since an adversary who could detect this could win against that previous stage.

B.3. Proof of the Main Theorem

Conventions

We remark on a few conventions which we adopt during the proof.
Many cases technically differ based on whether the actor of the Test session has the

initiator or responder role. For example, the first session key derived by the initiator is
from a sending chain, while the first one derived by the responder is from a receiving
chain. Where the security arguments are identical except for obvious symmetries, we
just consider the case of the initiator and leave the responder as analogous.
Signal uses HMAC and HKDF within the KDF invocations. We assume that the KDF

invocations themselves (as defined in Fig. 7) are random oracles and thus need not make
any assumptions on HMAC and HKDF specifically.
By breaki , we mean the event that the adversary wins game Gi . By Advi , we mean

the advantage of the adversary against game Gi ; that is,

Advi := |2 Pr(breaki) − 1|

We aim to show that Adv0 is a negligible function of the security parameter. To avoid
overfilling our subscripts, we overload where it is obvious which game is meant.

Theorem 1. The Signal protocol is a secure multi-stage key exchange protocol under
the GDH assumption and assuming all KDFs are random oracles. That is, if no efficient
adversary can break the assumptions with non-negligible probability, then no efficient

1956 K. Cohn-Gordon et al.

adversary can win the multi-stage key indistinguishability security experiment for Signal
(and thereby distinguish any fresh message encryption key from random) with non-
negligible probability.

Proof. We begin by performing a series of game hops that affect all potential cases.
After these, the game hops diverge depending on which case we are considering. See
Fig. 9 for a high-level overview of the proof structure and the case distinctions.

Game Hops for all Cases

Game 0

This game equals the multi-stage security experiment described in Sect. 4.2. As such,
the advantage of the adversary against this game is Adv0.

Game 1

In this game, we ensure no collision of honestly generated Diffie–Hellman (DH) public
keys. Specifically, the challenger C maintains a list L of all Diffie–Hellman (DH) private
values (for ik, prek, ek, eprek, rchk) honestly generated during the game. If a Diffie–
Hellman (DH) private value appears twice, C aborts the simulation and the adversary
automatically loses. For an adversary’s execution during the game, let nP denote the total
number of parties, nS the maximum number of sessions, nM the maximum number of
medium-term keys per party, and ns the maximum number of stages. We note that there
are nP long-term keys in the game, a maximum of nM medium-term keys generated for
each of the nP parties for a maximum of nMnP medium-term keys, and a maximum of
ns ephemeral/ratchet keys per session for a total maximum of nSns ephemeral/ratchet
keys. This means a total maximum of nP + nPnM + nSns DH keys in the list L , every
pair of which must not collide. There are

(|L|
2

)
such pairs of DH keys to consider in the

game. Each DH key in L is in the same group of order q so collides with another key in
L with probability 1/q. Therefore, we have the following bound:

Adv0 ≤
(nP+nPnM+nSns

2

)

q
+ Adv1

We now know that from this game onwards each honestly generated Diffie–Hellman
(DH) public key is unique. In future game hops, we will replace certain Diffie–Hellman
(DH)valueswith ones sampledby aGDHchallenger; thismeans that if these replacement
values collide, we must abort the game and will therefore be unable to answer the GDH
challenge. This will appear in game G4. Luckily, the probability of the GDH challenger
producing colliding GDH challenge values is negligible (probability 1/q), as we will see.

Game 2

In this game, the challenger guesses in advance the session π i
u against which the

Test(u, i, s) query is issued: the challenger guesses a pair of indices (u∗, i∗) ∈

A Formal Security Analysis of the Signal Messaging Protocol 1957

[1..nP] × [1..nS]. Let T be the event that the adversary issues a Test query Test(u, i, s)
where (u, i) �= (u∗, i∗). In this game, we abort if event T occurs; it is a transition based
on a large failure event.

T will occur with probability 1/nSnP, and hence:

Adv1 = nSnPAdv2

We remark that the bound we prove in this hop is not tight and refer the reader to [3]
for further discussions and impossibility results regarding tightness.

Game 3

In this game, the challenger guesses an index v∗ ∈ [nP] and aborts if there exists a
session π

j
v that matches the Test session π i

u but v �= v∗. Note that it might be the case

that no such matching π
j
v exists, but this game ensures that if such a π

j
v does exist, v is

unique and known in advance by the challenger.
We must first show that there can exist at most one identity v with the same session

identifier as π i
u (note v may have multiple sessions that match π i

u as the responder does
not contribute freshness in the Triple-DH case). Alice’s session identifier for stage [:0,]
contains ipkv (the identity public key of the peer). In G1, we ensured that all Diffie–
Hellman (DH) values were unique, and hence the claim holds.
It follows that the challenger’s guess is correct with probability 1/nP, and so (large

failure event):

Adv2 ≤ nPAdv3

In this game, we do not guess the partner session because the responder does not always
contribute an ephemeral key. As such, it is perfectly possible for v to have multiple
sessions that match the test π i

u because the adversary may replay π i
u’s ephemeral key to

multiple sessions of v, which only uses the same public key and medium-term key. Only
in triple+DHE does v contribute a ephemeral key (that is unique due to Game 1), and
indeed in this case, we will do another game hop to guess the unique partner session in
advance.
Currently, we have derived the following probability bound:

Adv0 ≤
(nP+nPnM+nSns

2

)

q
+ nSn

2
P · Adv3

At this point, we need to partition our analysis for individual cases, with the ultimate aim
of bounding Adv3 above. Once we have bounded Adv3, then we have bounded Adv0
and we are done. Since this is G3, each different case begins with a hop to some G4.
Given there are five cases, it is clear that:

Adv3 ≤ AdvC13 + AdvC23 + AdvC33 + AdvC43 + AdvC53

1958 K. Cohn-Gordon et al.

Fig. 10. Legend for the boxes in the following diagrams. Red boxes indicate secrets that the adversary may
gain access to via Reveal queries (or by computing the secrets as a result of the Reveal query), green boxes
indicate secrets that are replaced based on the challenge, and blue boxes indicate secrets that the challenger is
able to replace with random, thus ensuring security (Color figure online).

Fig. 11. A diagram showing the replacement of secrets in Game 6 of Case 1.1. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case. Diagram legend can be found in Fig. 10 (Color
figure online).

C1: Initial Key Exchange: type[0] = triple

First, we consider the security of Signal in the multi-stage key-indistinguishability game
against an adversary A that issues a Test(u, i, [0]) query with π i

u .type[0] = triple.
By construction, the only way for the adversary to win (with non-negligible probability)
is if cleantriple(u, i, [0]) is true. We partition these scenarios into subcases. Note also

that a RevState(u, i, [0]) or RevState(v, j, [0]) (where π
j
v is a session matching π i

u if
one exists) query will reveal nothing to the adversary, as there exists no previous state.
Moreover, after our game hops, we will have replaced the Tested message key with a

A Formal Security Analysis of the Signal Messaging Protocol 1959

uniformly random value that is independent to all other keys, so other issued RevState
queries will only reveal independent root keys and chain keys. As the state will be
independent from the Tested session key, it will not help the adversary distinguish the
Test session key from random. How to simulate reveal queries will be dealt with formally
in the game hops.
We now begin to separate our analysis based on sub-clauses of the cleanness predicate.

Let Etriple be the event that an adversary A wins the ms-ind game by issuing a Test
query Test(u, i, [0]), such that π i

u .type = triple, and let Etriple
cleanLM

(resp. Etriple
cleanEL

,

Etriple
cleanEM

) be the sub-case in which additionally cleanLM(u, i) (resp. cleanEL(u, i, [0]),
cleanEM(u, i, [0]) is true. By definition of cleantriple:

AdvC13 ≤ AdvC1,cleanLM(u,i)
3 + AdvC1,cleanEL(u,i,0)

3 + AdvC1,cleanEM(u,i,0)
3

C1.1: Case type[0] = triple and cleanLM(u, i):

In this case, Atriple issued a Test(u, i, [0]) query such that cleanLM(u, i) is upheld.
For Test sessions where π i

u .role = init, this requires that Atriple has not issued
RevLongTermKey(u) orRevMedTermKey(v, n)where π i

u .peerpreid = n. Since we
do not consider the signatures over the medium-term prekeys in our model, we may
assume that π i

u has received prepkv
n without modification.

Recall that anhonest sessionderives amaster secretms = giku ·prekv
n ‖geku ·ikv‖geku ·prekv

n ,
and then assigns rk1 ‖ ckir

0,0 ← HKDF(ms).
Our goal will be to replace the session key with a random value so that the adversary

cannot guess the hidden bit (Game 7). Since we are working in the random oracle model
and the session key is the output of a call to the random oracle, this means the adversary
must query the random oracle on the exact input (Game 6). We embed a Gap Diffie–
Hellman challenge into one of the components of the input to the random oracle. For
this particular case (C1.1), which depends on the cleanLM(u, i) condition, we embed
the GDH challenge into the long-term key of party u and one of the medium-term keys
of the peer v (hop from Game 5 to Game 6). In order do this embedding, we must guess
which of the medium-term keys of the peer is actually used (Game 4). (There is also a
minor technicality covered in Game 5, described below.)

Game 4

In this game, the challenger guesses the index n ∈ [1..nM] of the signed prekey of the
peer (prekv

n) that the Test session will use in the execution of the protocol, and aborts if
the guess is wrong. This yields (via large failure event) that

Adv3 ≤ nMAdv4

Game 5

In this game, the experiment does not abort if ipku and prepkv
n are the same. (Recall that

in Game 1, we added an abort event if any DH values were the same. We will soon want
to employ a GDH challenger, but the two challenge public keys in a GDH challenger

1960 K. Cohn-Gordon et al.

may (with small probability) be the same, so we need to re-allow that in our game hops.)
Since the keys are elements of a group of order q, the probability that one of them equals
the other is 1/q and thus

Adv4 ≤ 1/q + Adv5

Game 6

In this game, the experiment aborts if the adversaryqueries giku ·prekv
n = CDH(ipku, prepkv

n)

as the first component of a call to the HKDF random oracle; denote this event abort6.
Thus, by a hop via small failure event,

Adv5 ≤ Adv(break6) + Adv6

We now need to bound Adv6. To do so, we show that, whenever event abort6 occurs,
we can construct an algorithm B0 that can win the Gap Diffie–Hellman problem. In the
GDH experiment, B0 receives as input a DH pair (gα, gβ) (for α and β unknown to
B0) and has access to an oracle ODDH that on input (gx , gy, gz) returns 1 if and only if
gxy = gz .

B0 will simulate Game 5, except that it replaces i pku with gα and prepkv
n with

gβ , refer to Fig. 11. Because certain keys have been replaced with public keys whose
corresponding private values are unknown to B0, we must define the actions that should
be taken when these private values would normally be used in a computation. Cleanness
implies that ¬rev_ltku ∧ ¬rev_mtkn

v , so B0 will not need to answer any Reveal queries
fromA on these values. However, sinceB0 has replaced the long-term identity key and a
medium-term public key of two parties, ifA decides to direct parties u or v to execute the
protocol in a non-Tested session, then B0 may need to perform simulations of concrete
computations with the private keys α and β, despite not knowing them. There are three
distinct types of sessions in which B0 may lack the private keys needed to compute the
master secret ms of that session:

(i) a non-Tested session between user u and user v using prekv
n where u is the initiator;

(ii) a non-Tested session between user u and some other user (possibly v or not) where
u is the responder;

(iii) a session between a user other than u and user v using prekv
n where v is the

responder.

In session type (i), the simulator does not knowCDH(gα, gβ)whichwould be an input
to the KDF computation of the session key (in fact this is the value that the simulator
needs to find in the GDH game). In session type (ii), the simulator does not know
CDH(gα, ge) for unknown, potentially maliciously chosen, e. In session type (iii), the
simulator does not know CDH(gβ, ge) for unknown, potentially maliciously chosen, e.

In each of these types of sessions, B0 will pick random keys rk1, ckir
0,0 rather than

deriving them via HKDF(ms). B0 maintains a list of all sessions in which random keys
have been substituted: the list contains the random session keys as well as the public
keys that should have been used to compute each component of the master secret. B0
must also ensure that key values used are consistent with any queries that A makes to
the random oracle HKDF. We are concerned about queries of the form gx1‖gx2‖gx3 .

A Formal Security Analysis of the Signal Messaging Protocol 1961

Fig. 12. A diagram showing the replacement of secrets in Game 5 of Case 1.2. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case Diagram legend can be found in Fig. 10 (Color
figure online).

Before answering any such query, B0 goes through each entry in the above list of ses-
sions: for each entry in the list, it uses its DDH oracle to check if the public keys that
should have been used to compute each component of the master secret match the cor-
responding component (gx1 , gx2 or gx3) of this random oracle query. For example, for
session type (i) this amounts to querying the DDH oracle ODDH(gα, gβ, gx1) and pos-
sibly ODDH(ge, gβ, gx2). If all components, when queried in the DDH oracle, return 1,
thenB0 uses the randomly chosen keys from that element of the list as the random oracle
response; otherwise, B0 samples a new random value as the random oracle response.
Similarly, session types (ii) and (iii) can be simulated.
(While the explanation above starts from B0 picking random session keys when sim-

ulating a session and then ensuring random oracle queries are answered consistently,
B0 must also do the reverse: when simulating a session, before picking random keys B0
analogously use its DDH oracle to check whether this matches a previous random oracle
query, to ensure correct simulation.)
Note the session type (i) is special: ifODDH(gα, gβ, gx1) = 1, then the adversary has

found the solution to the GDH problem for us, and B0 can use gx1 as its answer to the
GDH challenger. Moreover, this is exactly when the event abort6 occurs.

Adv(break6) = εGDH(B0)

Game 7

In this game, the experiment replaces the session key in the Test session with a uniformly
random key from the same space. Because of the event abort6 in Game 6, we know that
the adversary never queried the random oracle HKDF on the input ms that was used

1962 K. Cohn-Gordon et al.

to compute the session key rk1 ‖ ckir
0,0 of the Test session. Thus, in the random oracle

model,

Adv6 = Adv7 = 0

since the session key is uniformly random and independent of the hidden bit, and hence
the adversary has no advantage in guessing the hidden bit and winning the experiment.
We conclude that

AdvC1,cleanLM(u,i)
3 ≤ nM(1/q + εGDH(B0) + 0)

C1.2: Case type[0] = triple and cleanEL(u, i, 0)

In this case, the adversary Atriple has issued a Test query Test(u, i, [0]) such that
cleanEL(u, i, [0]) is upheld. For Test sessions such that π i

u .role = init, this means
thatAtriple has not issuedRevRand(u, i, [0]) and RevLongTermKey(v) where v =
π i

u .peeripk. For Test sessions such that π i
u .role = resp, this means that Atriple has

not issuedRevLongTermKey(u) and aRevRand(v, j, [0]) such thatπ j
v .sid[0]matches

the Test session π i
u .sid[0].

Game 4, 5, 6

The argument for this case is almost identical to that of the previous subcase, except we
no longer need to guess the index of the long-term key of the responder or the ephemeral
key of the initiator. The GDH challenge values gα , gβ are inserted into the simulation
in Game 5 in place of the ephemeral key of the initiator and the long-term key of the
responder, refer to Fig. 12.

AdvC1,cleanEL(u,i,0)
3 ≤ 1/q + εGDH

C1.3: Case type[0] = triple and cleanEM(u, i, [0])
Game 4, 5, 6, 7

In this case, the adversary Atriple has issued a Test query Test(u, i, [0]) such that
cleanEM(u, i, [0]) is upheld. For Test sessions such thatπ i

u .role = init, this means that
Atriple has not issued a RevRand(u, i, 0) and RevMedTermKey(v, π i

u .peerpreid).
For Test sessions such that π i

u .role = resp, this means that Atriple has not issued

a RevRand(v, j, [0]) such that π
j
v .sid[0] matches the Test session π i

u .sid[0] and
RevMedTermKey(u, π i

u .prepk).
Again, this is analogous to before.We begin by guessing the index of the signed prekey

of the responder, incurring a factor of nM. By the definition of the cleanness predicate
cleanEM(u, i, [0]), since both the ephemeral key of the initiator and the first ratchet key
of the initiator are generated during the initial key exchange and used to derive the first
message key, we might use either the ratchet key or the ephemeral key of the initiator as
the basis for our game hop. We choose to embed the Gap-DH challenge values gα, gβ

A Formal Security Analysis of the Signal Messaging Protocol 1963

Fig. 13. A diagram showing the replacement of secrets in Game 6 of Case 1.3. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case Diagram legend can be found in Fig. 10 (Color
figure online).

into the simulation in Game 6 in place of the ephemeral key of the initiator and the
particular medium-term key of the responder used in the Test session, refer to Fig. 13.
Thus,

AdvC1,cleanEM(u,i,0)
3 ≤ nM · (1/q + εGDH)

C2: Initial key exchange: type[0] = triple+DHE

Recall that the initial key exchange can also have type triple+DHE, in which case
cleanness requires that

cleanLM(u, i) ∨ cleanEL(u, i, [0]) ∨ cleanEM(u, i, [0]) ∨ cleanEE(u, i, [0])

We now consider the case that the adversary has issued a Test queryTest(u, i, [0])where
the stage π i

u .type[0] = triple+DHE. We note that three of the subcases are the same
as previously, with the additional subcase cleanEE(u, i, [0]). As before, we define

• Etriple+DHE
cleanLM

to be the event that an adversary wins the multi-stage key-
indistinguishability game where A has issued a Test query Test(u, i, [0]) and
cleanLM(u, i) is upheld,

• Etriple+DHE
cleanEM

whereA has issued a Test queryTest(u, i, [0]) and cleanEM(u, i, [0])
is upheld,

• Etriple+DHE
cleanEL

whereA has issued a Test queryTest(u, i, [0]) and cleanEL(u, i, [0])
is upheld, and

1964 K. Cohn-Gordon et al.

Fig. 14. A diagram showing the replacement of secrets in Game 6 of Case 2.4. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case Diagram legend can be found in Fig. 10 (Color
figure online).

• Etriple+DHE
cleanEE

where A has issued a Test query Test(u, i, [0]) and
cleanEE(u, i, [0], [0]) is upheld.

By definition of cleantriple+DHE:

AdvC23 ≤ AdvC2,cleanLM(u,i)
3 + AdvC2,cleanEL(u,i,[0])

3 + AdvC2,cleanEM(u,i,[0])
3

+ AdvC2,cleanEE(u,i,[0],[0])
3

The bounds above are proved to be negligible under our cryptographic assumptions
exactly as above, yielding the inequalities as desired. As before, the crucial proof step
in each case is the Gap-Diffie–Hellman (DH) assumption. However, for this case it will
also make a game hop like Game 3, where we additionally know Bob’s unique matching
session in advance. We can do this now because Bob has freshness in the handshake.

C2.4: Case type[0] = triple+DHE and cleanEE

Game 4, 5, 6, 7

The final ephemeral–ephemeral case Etriple+DHE
cleanEE

is analogous to previous cases except

that in Game 6 (Etriple+DHE
cleanEE

), we need to replace the ephemeral values of both the
initiator and the responder, refer to Fig. 14. (Since the simulator in G4 will never reuse
ephemeral values in a different session, the simulation in this case is simpler and will
not need to use its DDH oracle to maintain consistency.) We have to consider that the
responder party generates a list of one-time ephemeral keys that new sessions (used in
sessions executed by the responder) may use, and thus G4 now incurs a factor of nS.

A Formal Security Analysis of the Signal Messaging Protocol 1965

Thus,

AdvC2,cleanEE(u,i,[0],[0])
3 ≤ nS · (1/q + εGDH)

C3: Asymmetric Ratcheting, Initial Stage

We have now proved security of the initial key exchange, optionally including the
ephemeral–ephemeral Diffie–Hellman (DH) computation. We next move on to the
asymmetric-ratcheting stages, in which Bob and Alice take turns generating new Diffie–
Hellman (DH) ephemeral values and updating their root keys. The first asymmetric-
ratcheting stage differs slightly from its successors since it immediately follows the
initial handshake, and we deal with it here now. Recall it is of type asym-ri, since it
is performed when Bob wishes to send a message to Alice.
We consider an adversary A that issues a Test(u, i, s = [asym-ri:1]) query, where

stage s must have type = asym-ri. Note that the initial asymmetric stage is always
of type asym-ri (messages from Alice to Bob before this stage are sent using the
symmetric chain derived from the initial handshake), and thus in this section we do not
need to consider initial stages of type asym-ir. We define

• Easym-ri to be the event that an adversary A wins the multi-stage key-
indistinguishability game by issuing a Test(u, i, s = [asym-ri:1]) query,

• Easym-ri
cleanEE(u,i,[0]) to be the sub-event of Easym-ri satisfying cleanEE(u, i, [0], [0]),

and
• Easym-ri

clean
π i

u .type[0](u,i,[0]) to be the sub-event of Easym-ri satisfying

cleanπ i
u .type[0](u, i, [0]) ∧ cleanstate(u, i, [asym-ri:1]).

It follows from our definition of freshness that

AdvC33 ≤ AdvC3,cleanEE(u,i,[0],[0])
3 + Adv

C3,clean
π i

u .type[0](u,i,[0])
3 (1)

andweconsider these twocases in turn, beginningwith the case thatcleanEE(u, i, [0], [0])
is upheld.

C3.1: Case s = [asym-ri:1], type[s] = asym-ri and cleanEE(u, i, [0], [0])
Game 4, 5, 6, 7

This case is dealt with similarly to subcase 2.4, with the only substantial differences

being that the GDH challenge values are substituted into the ratchet keys grchk[0]
u and

grchk[0]
v (refer to Fig. 15) and we do not need to guess the index of the ratchet keys. Since

the adversary reveals secret ephemeral values for specific stages using the RevRand
query (as opposed to querying specific secret values), the predicate cleanEE covers
secrecy both of the initiator’s initial key exchange ephemeral value, and the initiator’s

1966 K. Cohn-Gordon et al.

Fig. 15. A diagram showing the replacement of secrets in Game 6 of Case 3.1. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case. Diagram legend can be found in Fig. 10 (Color
figure online).

first ratchet key, which are generated at the same time. Thus,

AdvC3,cleanEE(u,i,[0],[0])
3 ≤ 1/q + εGDH

C3.2: Case s = [asym-ri:1], type[s] = asym-ri and cleanπ i
u .type[0](u, i, [0])

In this case, cleanness comes from the initial key exchange (i.e., from one of its three
or four disjuncts), and the fact that the adversary has not revealed the state linking the
initial key exchange to this stage. The initial key exchange derives rk1: we perform
one game hop to replace that value with a uniformly random value; the game hop is
indistinguishable assuming the security of rk1, which follows from Cases 1 and 2. Game
7′ is indicated below.
Game 7′

In this game, we replace the root key rk1 derived in stage [0] by both the Test session
and any matching peers with a uniformly random value, refer to Fig. 16.

An adversary which can distinguish G7′ from its predecessor game can distin-
guish the root key from a random value. The root key was derived in the initial
triple (or triple+DHE) handshake by applying KDFr to the master secret ms.
In Case 1 (or Case 2), we argued that all values derived from ms using HKDF
were indistinguishable from random. Thus, an adversary that wins here contra-
dicts the security of Case 1 (or Case 2). Recall that we denote with AdvC13 the
adversary’s advantage in breaking the key-indistinguishability of Case 1, and with
AdvC23 we denote the adversary’s advantage in breaking the key-indistinguishability
of Case 2. Given that only one of Case 1 or Case 2 applies (given how the ini-

A Formal Security Analysis of the Signal Messaging Protocol 1967

Fig. 16. A diagram showing the replacement of secrets in Game 7’ of Case 3.2. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;

denotes secrets that are not relevant to this case; and denotes secrets one of which is assumed
uncompromised but the rest may be revealed by A. Diagram legend can be found in Fig. 10 (Color figure
online).

tial key exchange is either of type triple or type triple+DHE), then the adver-
sary’s probability in distinguishing this change is max{AdvC13 ,AdvC23 }. Note that

AdvC13 ≤ AdvC1,cleanLM(u,i)
3 + AdvC1,cleanEL(u,i,0)

3 + AdvC1,cleanEM(u,i,0)
3 and AdvC23 ≤

AdvC2,cleanLM(u,i)
3 + AdvC2,cleanEL(u,i,0)

3 + AdvC2,cleanEM(u,i,0)
3 AdvC2,cleanEE(u,i,[0],[0])

3 ,
and that the upper bounds on the first three subcases of both Case 1 and Case 2 are
identical.
After replacing the root key rk1, it is straightforward to see that it is impossible for

the adversary to differentiate keys derived in this stage—chaining keys ckri
x,0 and ckri

x,1,

messaging key mkri
x,0, and intermediate value tmp from random: these are derived by

applying KDFr to rk1 and then KDFm to that result. Since both KDFs are modelled as
random oracles, and the input to KDFr is an independent uniformly random value, the
adversary has no advantage is distinguishing this stage’s session key from random. For

readability, we define Adv
C3,clean

π i
u .type[0](u,i,[0])

3 = AdvC3.23 . Thus,

AdvC3.23 ≤ max{AdvC13 + AdvC23 }

C4: Asymmetric Ratcheting, Non-initial Stages

At this point, wemove on to arbitrary subsequent asymmetric stages.We assume that the
initial handshake was of type triple, but the case of triple+DHE is analogous. The
intuition for this part of the proof is essentially induction and post-compromise security:

1968 K. Cohn-Gordon et al.

Fig. 17. A diagram showing the replacement of secrets in Game 7’ of Case 4.1.1. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case. Diagram legend can be found in Fig. 10 (Color
figure online).

• root keys provide security because they come fromprevious stageswhich are secure;
or

• shared secrets derived from pairs of ephemeral keys provide security even if the
root key at the time is compromised.

We first make a case distinction on the direction (Case 4.1: asym-ir vs. Case 4.2:
asym-ri) and then deal with these cases in turn. Thus, AdvC43 ≤ AdvC4.13 + AdvC4.23 .

C4.1: Asymmetric Ratcheting, s = [asym-ir:x], x ≥ 1, type[s] = asym-ir

Definition 8 requires that one of the following conditions must be satisfied if
cleanasym-ir(u, i, [asym-ir:x]) is to hold.

• event Easym-ir
clean-prev :cleanasym-ri(u, i, [asym-ri:x − 1])∧cleanstate(u, i, [asym-ir:x])

• event Easym-ir
clean-cur : cleanEE(u, i, x − 1, x − 1)

Thus,

AdvC4.13 ≤ Adv
C4.1,cleanprev
3 + AdvC4.1,cleanEE(u,i,x−1,x−1)

3

C4.1.1: Case s = [asym-ir:x], x ≥ 1, type[s] = asym-ir and Easym-ir
clean-prev

This case follows inductively like Case 3.2. This stage’s message key (as well as the next
root and chaining key) is derived by applying KDFr to tmp, which was derived during
stage [asym-ri:x], and then KDFm to the result. By an argument similar to Case 3.2,
we can replace tmp with a random key, refer to Fig. 17. Treating the KDF as a random
oracle, this stage’s message key, the next root key rkx+1 and the symmetric chaining

A Formal Security Analysis of the Signal Messaging Protocol 1969

Fig. 18. A diagram showing the replacement of secrets in Game 7’ of Case 4.1.2. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case. Diagram legend can be found in Fig. 10 (Color
figure online).

keys ckir
x,0 and ckir

x,1 are then indistinguishable from random. For readability, we denote

Adv
C4.1,cleanprev
3 = AdvC4.1.13 , AdvC2,cleanLM(u,i)

3 = AdvC2.13 , AdvC2,cleanEL(u,i,[0])
3 =

AdvC2.23 , AdvC2,cleanEM(u,i,[0])
3 = AdvC2.33 , AdvC2,cleanEE(u,i,[0],[0])

3 = AdvC2.43 . Thus:

AdvC4.1.13 ≤ 1/q + AdvC2.13 + AdvC2.23 + AdvC2.33 + AdvC2.43 + εGDH

C4.1.2: Case s = [asym-ir:x], x ≥ 1, type[s] = asym-ir and Easym-ir
clean-cur

This case is analogous to Case 3.1, with key indistinguishability following from secrecy
of the DH shared secret derived from ratchet keys. We first replace the ratchet public
keys with challenge values from the Gap-DH game, noting that cleanEE implies the
existence of a unique session at Bob with the same sid as that of Alice’s session, refer to
Fig. 18. As before, an adversary which could distinguish this game from its predecessor
allows us to answer the Gap-Diffie–Hellman (DH) challenge, violating that assumption.
Indistinguishability of this stage’s message key, as well as the next root and chaining
keys enumerated in Case 4.4.1, then follows from applying the (random oracle) KDF to
the (now independent) DH shared secret. Thus:

AdvC4.1,cleanEE(u,i,x−1,x−1)
3 ≤ 1/q + εGDH

C4.2: Asymmetric Ratcheting, s = [asym-ri:x], x > 1, type[s] = asym-ri

Now we come to the case of non-initial asymmetric stages of type asym-ri. The
proof here is nearly the same as in Case 4.1, except there is an extra KDF application:

1970 K. Cohn-Gordon et al.

Fig. 19. A diagram showing the replacement of secrets in Game 7’ of Case 4.2.1. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case. Diagram legend can be found in Fig. 10 (Color
figure online).

session keys derived by these stages are computed by first applying a KDF to derive an
intermediate value tmp, and second applying another KDF to derive from tmp a session
key.
Similarly, we partition our analysis into the following cases.

• event Easym-ri
clean-prev : cleanasym-ir(u, i, [asym-ir:x])

• event Easym-ri
clean-cur : cleanEE(u, i, x, x − 1)

C4.2.1: Case s = [asym-ri:x], x > 1, type[s] = asym-ri and Easym-ri
clean-prev

Once again the inductive argument here is analogous to Case 3.2: secrecy follows from
the root key, and so we begin by replacing the root key with a random value, refer to
Fig. 19. Detecting this change would violate the security properties of the previous stage,
but after it the session key is easily proven indistinguishable from random. This stage’s
message key mkri

x,0 as well as symmetric chaining keys ckri
x,0 and ckri

x,1 and intermediate
value tmp, are all also then indistinguishable from random. For readability, we denote

Adv
C4.2,cleanprev
3 = AdvC4.2.13 , AdvC2,cleanLM(u,i)

3 = AdvC2.13 , AdvC2,cleanEL(u,i,[0])
3 =

AdvC2.23 , AdvC2,cleanEM(u,i,[0])
3 = AdvC2.33 , AdvC2,cleanEE(u,i,[0],[0])

3 = AdvC2.43 . Thus:

AdvC4.2.13 ≤ 1/q + AdvC2.13 + AdvC2.23 + AdvC2.33 + AdvC2.43 + εGDH

C4.2.2: Case s = [asym-ri:x], x > 1, type[s] = asym-ri and Easym-ri
clean-cur

For this case, we proceed similarly to Case 3.1. The DH shared secret can be shown
indistinguishable under the Gap-DH assumption by replacing the ratchet public keys

A Formal Security Analysis of the Signal Messaging Protocol 1971

Fig. 20. A diagram showing the replacement of secrets in Game 3 of Case 4.2.2. In particular, denotes
secrets that the adversary may compromise via Reveal queries (or by computing the secrets as a result of the
Reveal query); denotes secrets that are replaced with the output of a Test query from a Case 1 or Case
2 challenger; denotes secrets that the challenger is able to replace with random, thus ensuring security;
and denotes secrets that are not relevant to this case. Diagram legend can be found in Fig. 10 (Color
figure online).

rchku
x , rchkv

x−1 of the Test session and its matching peer with values from a GDH chal-
lenger, refer to Fig. 20. Indistinguishability of the stage’s message key, symmetric chain-
ing keys, and intermediate value tmp (as enumerated in case 4.2.1) all follow in turn
from applying a (random oracle) KDF to (now independent) secret values. Thus:

AdvC4.2,cleanEE(u,i,x−1,x−1)
3 ≤ 1/q + εGDH

C5: Symmetric Ratcheting: type[s] ∈ {sym-ir,sym-ri}

We finally arrive at the case of Signal in the multi-stage key-indistinguishability game
against an adversaryA that issues aTest(u, i, [sym-ir:x, y]) orTest(u, i, [sym-ri:x, y])
query against some symmetric stage. Thus,

AdvC53 ≤ AdvC5,sym-ir3 + AdvC5,sym-ri3

In all subcases, we will show that the probability of winning is 1/2.

C5.1: Symmetric Ratcheting, s = [sym-ir:x, y], type[s] = sym-ir

We partition into the three different freshness conditions for the case [sym-ir:x, y]. We
then cover the case of [sym-ri:x, y] similarly. The intuition is that for the first stage, the
symmetric keys are derived from an asymmetric update and their secrecy follows from
the previous cases. For subsequent stages, we have security due to the recursive nature
of the freshness condition: we can replace the chain key used to derive the message
key with randomness; if the simulation did not work, then the adversary could attack

1972 K. Cohn-Gordon et al.

Fig. 21. A diagram showing the replacement of secrets in Game 7’ of Case 5.1.2. All other subcases follow
a similar replacement strategy. In particular, denotes secrets that the adversary may compromise via
Reveal queries (or by computing the secrets as a result of the Reveal query); denotes secrets that are
replaced with the output of a Test query from a Case 1 or Case 2 challenger; denotes secrets that the
challenger is able to replace with random, thus ensuring security; denotes secrets that are not relevant
to this case; and denotes secrets one of which is assumed uncompromised but the rest may be revealed
byA. Diagram legend can be found in Fig. 10 (Color figure online).

the previous stage, which is a contradiction to security of previous cases because the
previous stage is fresh. In all symmetric stages, no new ephemeral keying material is
introduced, so security depends solely on the chaining state not being leaked (which is
guaranteed for these cases by cleanstate). Thus:

AdvC5,sym-ir3 ≤ AdvC5,sym-ir,x=0,y=1
3 + AdvC5,sym-ir,x>0,y=1

3 + AdvC5,sym-ir,x≥0,y>1
3

(Recall that the case y = 0 is performed as part of the message key derivation in the
previous asymmetric update, so that the first symmetric stage derives key number 1.)

C5.1.1: Case s = [sym-ir:x, y], x = 0, y = 1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFm to ckir
0,1, which was derived

during the initial triple or triple+DHE handshake. By Case 3.2, ckir
0,1 is indistin-

guishable from random, refer to Fig. 21. Like the argument in Case 3.2, treating KDFm
as a random oracle, this stage’s messaging key and the next chaining key ckir

0,2 are thus
indistinguishable from random. Thus,

AdvC5,sym-ir,x=0,y=1
3 ≤ AdvC2,cleanLM(u,i)

3 + AdvC2,cleanEL(u,i,[:0,]))
3 + AdvC2,cleanEM(u,i,[:0,]))

3

+ AdvC2,cleanEE(u,i,[:0,],[:0,])
3

A Formal Security Analysis of the Signal Messaging Protocol 1973

C5.1.2: Case s = [sym-ir:x, y], x > 0, y > 1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFm to ckir
x,1, which was derived

during asymmetric second-stage [asym-ir:x]. By Case 4.1, ckir
x,1 is indistinguishable

from random. Like the argument in Case 2, treating KDFm as a random oracle, this
stage’s messaging key and the next chaining key ckir

x,2 are thus indistinguishable from
random. Thus,

AdvC5,sym-ir,x>0,y=1
3 ≤ Adv

C4.1,cleanprev
3 + AdvC4.1,cleanEE(u,i,x−1,x−1)

3

C5.1.3: Case s = [sym-ir:x, y], x ≥ 0, y.1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFm to ckir
x,y , which was derived

during symmetric stage [sym-ir:x]y − 1. By Case 5.1.1, 5.1.2, or induction on Case
5.1.3, ckir

x,y−1 is indistinguishable from random. Like the argument in case 3.2, treating

KDFm as a random oracle, this stage’s messaging key and the next chaining key ckir
x,y+1

are thus indistinguishable from random. Thus,

AdvC5,sym-ir,x≥0,y>1
3 ≤ AdvC5,sym-ir,x=0,y=1

3 + AdvC5,sym-ir,x>0,y=1
3

C5.2: Symmetric ratcheting, s = [sym-ri:x, y], type[s] = sym-ri

These cases are analogous to Case 5.1, by symmetry: cleanness is defined in the same
recursivemanner for bothsym-ir andsym-ri stages, except that the base cases differ.
The initial game hops are thus analogous to those in the asym-ir and asym-ri,
respectively, and the subsequent inductive argument is analogous to Case 5.1.3. Thus,

AdvC5,sym-ri3 = AdvC5,sym-ir3

Appendix C. Achieving a Standard Model Proof of the Signal Protocol

One drawback of the proof as it currently stands is that it sits within the random oracle
model. This is an assumption which has received some criticism from parts of the
cryptographic community because, while it is a useful assumption for proofs, it can
never be satisfied in reality [9,39]. There are even pathological constructions which are
provably secure with random oracles, but which can never be secure when the random
oracle is replaced with any concrete primitive [5,19]. While the use of the random oracle
model does not imply an attack, and in fact sometimes deliberately avoiding it can cause
more severe problems [46], its use may be unsettling for some.
Therefore, in this section, we outline the process inwhich one could attempt a standard

model proof of the Signal Protocol in our security model. This is not a straightforward
task; a naive attemptwould be by retaining the current structure of our proof and replacing
Gap-DH assumptions with a pair of DDH and PRF security assumptions. However, this
approach does not fit. Similarly to previous proofs of TLS [30,42], we find ourselves
relying instead on the PRF-ODH assumption. There are many different variants of the

1974 K. Cohn-Gordon et al.

PRF-ODH assumption throughout the literature; see [18] for a detailed exposition of
these variants. However, the crux of the assumption is as follows. Given gu and gv ,
computing a function PRF(guv, x) should be hard, even with choice of x and an oracle
that computes values like PRF(guw, x ′) and PRF(gwv, x ′) for chosen w �= u, v.

Roughly speaking, the reason a PRF-ODH assumption is required is that there are
long-lived keys used in key computations in Signal that must be simulated when they are
substituted out in the game hops. Before, we used a randomoracle—which, by definition,
gives random replies that the simulator could just choose randomly but consistently—to
simulate these key computations. Now, we need a Diffie–Hellman oracle from the PRF-
ODH assumption to carry out the simulation. Because Signal computes keys using a PRF
on Diffie–Hellman values, it seems at least plausible that some version of a PRF-ODH
assumption may work for a proof.
Readers may ask why we cannot simply retain the current structure of our proof and

replace the Gap-DH assumptions with a single PRF-ODH step. As discussed in Sect. 2
(and wholly unlike TLS), the Diffie–Hellman values used in Signal can be long term,
medium term, or ephemeral. These keys are also used in different combinations in key
derivations. This difference requires that we not use a single PRF-ODH assumption,
but a range of PRF-ODH assumptions that are parameterized by how many times the
challenger will generate PRF(guv′

, x) and PRF(gu′v, x) values upon being queried for a
“left” or “right” PRF-ODH oracle (gv′

, x) or (gu′
, x) (where gu′

and gv′
are not one of

the DH challenge values (gu, gv) given by the challenger). We give a formal definition
below from the work by Brendel et. al. [18].

Definition 10. (Generic PRF-ODH assumption) Let G be a cyclic group of order q
with generator g. Let PRF : G × {0, 1}∗ → {0, 1}λ be a pseudo-random function that
takes as key input an element k ∈ G and an arbitrary-length salt value x ∈ {0, 1}∗ as
input and outputs a value y ∈ {0, 1}λ.
We define a generalized security notion lr -PRF-ODH, which is parameterized by

l, r ∈ {n, s,m}, indicating how often the adversary is able to query a certain left oracle
or right oracle (denotedODHu andODHv , respectively) where n indicates that no query
is allowed, s indicates that a single query is allowed, and m indicates that arbitrarily
many queries are allowed to the respective oracle. Consider the lr -PRF-ODH security
experiment depicted in Fig. 22.
We say that the adversary A wins the lr -PRF-ODH game if b′ = b and define the

following advantage function:

Advlr -PRF-ODH
PRF,G (A) := |Pr(Explr -PRF-ODH

PRF,G,g,q (A) = 1) − 1

2
|

To add to the difficulty, these left-and-right generic PRF-ODH assumption variants do
not allow the adversary to query both sides of the DH keyshares multiple times before
the challenger generates the secret value, which would be the case in the replacement of
the long-term and medium-term secrets (refer to Case 1.1), which means that we would
need to further modify the generic PRF-ODH assumption to the needs of our particular
Signal Protocol proof. We call this a symmetric generic PRF-ODH problem, which we
define below.

A Formal Security Analysis of the Signal Messaging Protocol 1975

Fig. 22. Security experiments for the genericPRF-ODH assumption, and the symmetricPRF-ODH assump-
tion. Note that both experiments make use of identical ODHu and ODHv oracles.

Definition 11. (Symmetric PRF-ODH assumption) LetG be a cyclic group of order q
with generator g. Let PRF : G × {0, 1}∗ → {0, 1}λ be a pseudo-random function that
takes as key input an element k ∈ G and an arbitrary-length salt value x ∈ {0, 1}∗ as
input and outputs a value y ∈ {0, 1}λ.
We define a symmetric security notion lr -sPRF-ODH, which is parameterized by

l, r ∈ {n, s,m}, indicating how often the adversary is able to query a certain left ora-
cle or right oracle (denoted ODHu and ODHv , respectively) where n indicates that
no query is allowed, s indicates that a single query is allowed, and m indicates that
polynomially many queries are allowed to the respective oracle. Consider the security
game Explr -sPRF-ODH

PRF,G,g,q (A) described in Fig. 22. We say that the adversary A wins the
lr -sPRF-ODH game if b′ = b and define the following advantage function:

Advlr -sPRF-ODH
PRF,G,A (λ) := |Pr(Explr -sPRF-ODH

PRF,G,g,q (A) = 1) − 1

2
|

However, Brendel et al. [18] also show (via a algebraic reduction and meta-reduction
argument) that the existence of any efficient black-box reduction from the sn/ns-
PRF-ODH problem to a decisional Diffie–Hellman-augmented (DDHa) problemwould
imply that either the DDHa problem or the decisional-square Diffie–Hellman problem
is not hard. The DDHa assumption is a class of assumptions, roughly stating that the

1976 K. Cohn-Gordon et al.

adversary cannot efficiently win between either the decisional Diffie–Hellman prob-
lem or some other independent cryptographic problem. This, the authors argue, shows
that the existence of a standard-model instantiation of any generic PRF-ODH prob-
lem (excepting nn-PRF-ODH) is impossible, assuming the aforementioned problems
are indeed hard. So constructing a standard model proof of the Signal Protocol using
generic PRF-ODH based assumptions could be moot.
There is, however, some advantage to this effort: it would bring clarity to which of

the cases would be easier for the adversary to break. In the work by Brendel et. al., the
relations and separations between the variants of lr -PRF-ODH are shown, and thus the
security of each of the cases is able to be compared concretely. In our current proof,
the adversary seemingly does not have an advantage targeting one particular case over
another. Now we have all the tools we would require to consider how the security proof
in each case would work. We consider each case below and explain which flavour of
PRF-ODH is required and why.

Case 1.1 In Game 6 of Case 1.1, we know that the long-term identity key of party u
and themedium-termkey of the peer v have not been compromised by the adversary,
and thus we can replace the key shares ipku , prepkv and the computed root key rk1
and first-stage chain key ckir

0,0 with PRF-ODH challenge values. Since both of
these Diffie–Hellman key shares can be used in multiple sessions, and (potentially)
may be used before the Test session has initialized, we require many ODHu and
ODHv queries at the start of the experiment before the challenge salt value x is
computed. Thus, we require themm-sPRF-ODH assumption, the strongest variant
of the PRF-ODH problem. In this case, we treat the keys ipku and prepkv as the
keys to the PRF-ODH problem (which is now internal to the mm-sPRF-ODH
game) and the following (potentially revealed) secrets ipkv and eku values as the
salt value x that is queried to themm-sPRF-ODH challenger. The challenge value
yb output by the challenger is then used to replace the rk1, ckir

0,0 values in both the

Tested session and its peer session that is used in computing the message key mkir
0,0

which was Tested by the adversary. In order to ensure that the message key mkir
0,0

is indistinguishable from random, we need an additional PRF game to replace the
computation of mkir

0,0 from KDFm , and use the output from the PRF challenger to

replace mkir
0,0. Thus, an adversary capable of distinguishing these changes would

also be capable of breaking the PRF security of KDFm , or the mm-sPRF-ODH
security of HKDF,G.
Case 1.2 In Game 6 of Case 1.2, we know that the predicate cleanEL(u, i, [0]) is
upheld, which means that the ephemeral key of the initiator and the identity key
of the responder have not been compromised by the adversary, and thus we can
replace the key shares epku , ipkv , and the computed root key rk1 and first-stage
chain key ckir

0,0 with PRF-ODH challenge values. Since only the identity key of
the responder can be used in multiple sessions and (potentially) may be used before
the Test session has initialized, we require many ODHu queries at the start of the
experiment before the challenge salt value x is computed. Thus, we require the
mn-PRF-ODH assumption, a non-symmetric variant of the PRF-ODH problem.
In this case, we treat the values ipkv , eku as the keys to the PRF-ODH problem
(which is now internal to themn-PRF-ODH game) and the following (potentially

A Formal Security Analysis of the Signal Messaging Protocol 1977

revealed) secrets prepkv , iku as the salt value x that is queried to themn-PRF-ODH
challenger. The challenge value yb output by the challenger is then used to replace
the rk1, ckir

0,0 values in both the Tested session and its peer session that is used in

computing the message key mkir
0,0 which was Tested by the adversary. In order to

ensure that the message key mkir
0,0 is indistinguishable from random, we need an

additional PRF game to replace the computation of mkir
0,0 from KDFm , and use the

output from the PRF challenger to replace mkir
0,0. Thus, an adversary capable of

distinguishing these changes would also be capable of breaking the PRF security
of KDFm , or the mn-PRF-ODH security of HKDF,G.
Case 1.3 In Game 6 of Case 1.3, we know that the predicate cleanEM(u, i, [0]) is
upheld, which means that the ephemeral key of the initiator and the medium-term
key of the responder have not been compromised by the adversary, and thus we can
replace the keyshares epku , prepkv and the computed root key rk1 and first-stage
chain key ckir

0,0 with PRF-ODH challenge values. Since only the signed prekey of
the responder can be used in multiple sessions and (potentially) may be used before
the Test session has initialized, we require many ODHv queries at the start of the
experiment before the challenge salt value x is computed. Thus, we require themn-
PRF-ODH assumption, a non-symmetric variant of the PRF-ODH problem. In this
case, we treat the values prepkv , eku as the key to thePRF-ODH problem (which is
now internal to themn-PRF-ODH game) and the following (potentially revealed)
secrets ipkv , iku values as the salt value x that is queried to the mn-PRF-ODH
challenger. The challenge value yb output by the challenger is then used to replace
the rk1, ckir

0,0 values in both the Tested session and its peer session that is used in

computing the message key mkir
0,0 which was Tested by the adversary. In order to

ensure that the message key mkir
0,0 is indistinguishable from random, we need an

additional PRF game to replace the computation of mkir
0,0 from KDFm and use the

output from the PRF challenger to replace mkir
0,0. Thus, an adversary capable of

distinguishing these changes would also be capable of breaking the PRF security
of KDFm , or the mn-PRF-ODH security of HKDF,G.
Case 2.1 This is treated identically to Case 1.1, with the same bounds and game
hops.
Case 2.2 This is treated identically to Case 1.2, with the same bounds and game
hops.
Case 2.3 This is treated identically to Case 1.3, with the same bounds and game
hops.
Case 2.4 In Game 6 of Case 2.4, we know that the predicate cleanEE(u, i, [0]) is
upheld, which means that the ephemeral key of the initiator and the ephemeral key
of the responder have not been compromised by the adversary, and thus we can
replace the key shares epku , epkv and the computed root key rk1 and first-stage
chain key ckir

0,0 with PRF-ODH challenge values. Since both keys are ephemerally
generated and only used a single time, we require the sn-PRF-ODH assumption,
the weakest non-standard model variant of the PRF-ODH problem. In this case, we
treat the epkv , eku as the key to the PRF-ODH problem (which is now internal to
the sn-PRF-ODH game) and the following (potentially revealed) secrets prepkv ,

1978 K. Cohn-Gordon et al.

ikv and iku values as the salt value x that is queried to the sn-PRF-ODH challenger.
The challenge value yb output by the challenger is then used to replace the rk1, ckir

0,0
values in both the Tested session and its peer session that is used in computing the
message key mkir

0,0 which was Tested by the adversary. In order to ensure that the

message key mkir
0,0 is indistinguishable from random, we need an additional PRF

game to replace the computation of mkir
0,0 from KDFm and use the output from

the PRF challenger to replace mkir
0,0. Thus, an adversary capable of distinguishing

these changes would also be capable of breaking the PRF security of KDFm , or the
sn-PRF-ODH security of HKDF,G.
Case3.1 InGame6ofCase3.1,weknow that the predicatecleanEE(u, i, [asym-ri:1])
is upheld, which means that the ratchet key of the initiator and the ratchet key
of the responder have not been compromised by the adversary, and thus we can
replace the key shares rchpku

0, rchpkv
0 and the computed temporary value x and

asymmetric-stage chain key ckri
1,0 with PRF-ODH challenge values. Since both

keys are ephemerally generated and only used a single time, we require the sn-
PRF-ODH assumption, the weakest non-standard model variant of the PRF-ODH
problem. In this case, we treat the values rchpkv

0, rchku
0 as the key to the PRF-ODH

problem (which is now internal to the sn-PRF-ODH game) and the (potentially
revealed) root key rk1 of the first stage as the salt value x that is queried to the
sn-PRF-ODH challenger. The challenge value yb output by the challenger is then
used to replace the x , ckri

1,0 values in both the Tested session and its peer session that

is used in computing the message key mkri
1,0 which was Tested by the adversary.

In order to ensure that the message key mkri
1,0 is indistinguishable from random,

we need an additional PRF game to replace the computation of mkri
1,0 from KDFm

and use the output from the PRF challenger to replace mkri
1,0. Thus, an adversary

capable of distinguishing these changes would also be capable of breaking the PRF
security of KDFm , or the sn-PRF-ODH security of HKDF,G.
Case3.2 InGame6ofCase3.2,weknow that the predicatecleanπ i

u .type[:0,](u, i, [:0,])
is upheld, which means that initial key-exchange stage has some Diffie–Hellman
key share pair that has not been corrupted and that the adversary has not revealed
the state linking the initial key-exchange to this stage. Depending on which clean
predicate that was upheld in the first stage, the replacement of Diffie–Hellman val-
ues is done as in Case 1.1, Case 1.2, Case 1.3 or Case 2.4. We know from these case
analysis that the root key rk1 is indistinguishable from random, and thus we are able
to replace this value with a random value rk1′ and note that an adversary capable of
distinguishing this change can break the security of Case 1.1, Case 1.2, Case 1.3 or
Case 2.4. We then use PRF game hops in a standard way to replace the derivation
of the x , ckri

1,0 values in both the Tested session and its peer session that is used

in computing the message key mkri
1,0 which was Tested by the adversary. In order

to ensure that the message key mkri
1,0 is indistinguishable from random, we need

an additional PRF game to replace the computation of mkri
1,0 from KDFm and use

the output from the PRF challenger to replace mkri
1,0. Thus, an adversary capable of

distinguishing these changes would also be capable of breaking the PRF security of

A Formal Security Analysis of the Signal Messaging Protocol 1979

KDFm , or themm-sPRF-ODH security of HKDF,G (as in Case 1.1), or themn-
PRF-ODH security of HKDF,G (as in Cases 1.2 and 1.3), or the sn-PRF-ODH
security of HKDF,G (as in Case 2.4).
Case 4.1.1 In Game 6 of Case 4.1.1, we know that the predicate cleanasym-ri(u, i,
[asym-ri:x − 1]) is upheld, which means that either:

• the previous stage’s ratchet keys have not been compromised by the adversary
(in which case analysis follows from Case 3.1)

• the previous stage’s state has not been compromised by the adversary (in which
case analysis follows from Case 3.2)

In a similar way, then, we follow those cases to replace the appropriate uncom-
promised Diffie–Hellman key shares with challenge values from a PRFODH game.
Thus, an adversary capable of distinguishing these changeswould also be capable of
breaking the PRF security of KDFm , or themm-sPRF-ODH security of HKDF,G

(as in Case 1.1), or the mn-PRF-ODH security of HKDF,G (as in Cases 1.2 and
1.3), or finally the sn-PRF-ODH security of HKDF,G (as in Cases 2.4 and 3.1).
Case 4.1.2 In Game 6 of Case 4.1.2, we know that the predicate cleanEE(u, i, x −
1, x −1) is upheld, which means that the previous stages ratchet keys have not been
compromised by the adversary and analysis follows from Case 3.1, with the same
bounds and game hops. In particular, this means that the adversary’s advantage in
breaking the key indistinguishability of the Tested session key is bound by the PRF
security of KDFr and KDFm , or the sn-PRF-ODH security of HKDF,G.
Case 4.2.1 In Game 6 of Case 4.1.1, we know that the predicate cleanasym-ri(u, i,
[asym-ir:x − 1]) is upheld. Note that similarly to the proof of Case 4.2.1, this
follows identically to Case 4.1.1 with an additionally application of a PRF game to
account for the intermediate computation of a tmp value.
Case 4.2.2 In Game 6 of Case 4.2.2, we know that the predicate cleanEE(u, i, x −
1, x − 1) is upheld, which means that the previous stages ratchet keys have not
been compromised by the adversary and analysis follows identically to Case 4.1.2,
with an additional PRF game to account for the intermediate computation of a tmp
value. In particular, this means that the adversary’s advantage in breaking the key
indistinguishability of the Tested session key is bound by the PRF security of KDFr

and KDFm , or the sn-PRF-ODH security of HKDF,G.
Case 5 In this Case, and all subcases, analysis follows from Case 4, with additional
PRF game hops to inductively replace chaining keys that via the cleanness predicate
cleansym have not been compromised by the adversary and thus follows from the
security of the appropriate asymmetric stage.

From this vantage point, we can now compare the cases concretely. For instance, it is
clear that the adversary’s advantage of breaking Case 1.1 (where the long-term identity
key of the initiator and the medium-term signed prekey of the responder have not been
compromised by the adversary) is quantitatively higher than the adversary’s advantage
in breaking Case 2.4 (where the ephemeral key of the initiator and the one-time prekey
of the responder have not been trivially compromised by the adversary). This is due to
the fact that Case 1.1 (and identically, Case 2.1) requires the strong symmetric variant of
PRFODH (i.e.mm-PRF-ODH), whereas Case 2.4 (and similarly, Case 3.1) requires the
weak non-symmetric variant of PRFODH (i.e. sn-PRF-ODH). Cases 1.2, 1.3, 2.2, and

1980 K. Cohn-Gordon et al.

2.3 sit between these two, requiring multiple queries an ODHu oracle, but no queries
to the ODHv oracle, as it simulates a long-term Diffie–Hellman key and a single-use
ephemeral Diffie–Hellman key using amn-PRF-ODH challenger.
In addition, this supplemental proof also allows us to consider any future work that

examines the computational hardness of the generic and symmetricPRF-ODH assump-
tions in relation to the security of the Signal protocol.

References

[1] J. Alwen, S. Coretti, Y. Dodis, The Double Ratchet: security notions, proofs, and modularization for the
Signal protocol, in IACR Cryptology ePrint Archive 2018 (2018), p. 1037. https://eprint.iacr.org/2018/
1037

[2] C. Bader, D. Hofheinz, T. Jager, E. Kiltz, Y. Li, Tightly-secure authenticated key exchange, in TCC 2015,
Part I, LNCS, vol. 9014. (Springer, Heidelberg, 2015), pp. 629–658

[3] C. Bader, T. Jager, Y. Li, S. Schäge, On the Impossibility of Tight Cryptographic Reductions. Cryptology
ePrint Archive, Report 2015/374 (2015). http://eprint.iacr.org/2015/374

[4] C. Ballinger, ChatSecure. https://chatsecure.org/blog/chatsecure-v4-released/ (visited on 01/2017)
[5] M. Bellare, A. Boldyreva, A. Palacio, An uninstantiable random-oracle-model scheme for a hybrid-

encryption problem, in Advances in Cryptology-EUROCRYPT 2004 (Springer, 2004), pp. 171–188
[6] M. Bellare, R. Canetti, H. Krawczyk, A modular approach to the design and analysis of authentication

and key exchange protocols (extended abstract), in 30th ACM STOC. (ACM Press, 1998), pp. 419–428
[7] M. Bellare, D. Pointcheval, P. Rogaway, Authenticated key exchange secure against dictionary attacks,

in EUROCRYPT 2000, LNCS, vol. 1807 (Springer, Heidelberg, 2000), pp. 139–155
[8] M. Bellare, P. Rogaway, Entity authentication and key distribution, in CRYPTO’93., LNCS, vol. 773

(Springer, Heidelberg, 1994), pp. 232–249
[9] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in

Proceedings of the 1st ACM conference on Computer and communications security (ACM. 1993), pp.
62–73

[10] M. Bellare, A.C. Singh, J. Jaeger, M. Nyayapati, I. Stepanovs, Ratcheted encryption and key exchange:
the security of messaging. Cryptology ePrint Archive, Report 2016/1028 (2016). http://eprint.iacr.org/
2016/1028

[11] M. Bellare, B.S. Yee, Forward-security in private-key cryptography, in CT-RSA 2003, LNCS, vol. 2612
(Springer, Heidelberg, 2003), pp. 1–18

[12] D.J. Bernstein, Curve25519: new Diffie–Hellman speed records, in PKC 2006, LNCS, vol. 3958
(Springer, Heidelberg, 2006), pp. 207–228

[13] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang, High-speed high-security signatures, inCHES
2011, LNCS, vol. 6917 (Springer, Heidelberg, 2011), pp. 124–142

[14] K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, S. Zanella-Béguelin, Downgrade
resilience in key-exchange protocols, in 2016 IEEE Symposium on Security and Privacy (IEEEComputer
Society Press, 2016), pp. 506–525

[15] D. Bogado, D. O’Brien, Punished for a Paradox. Mar. 2, 2016. https://www.eff.org/deeplinks/2016/03/
punished-forparadox-brazils-facebook (visited on 07/2016)

[16] N. Borisov, I. Goldberg, E. Brewer, Off-the-record communication, or, why not to use PGP, in WPES
(ACM, Washington DC, 2004), pp. 77–84

[17] C. Boyd, C. Cremers, M. Feltz, K.G. Paterson, B. Poettering, D. Stebila, ASICS: authenticated key
exchange security incorporating certification systems, in ESORICS 2013, LNCS, vol. 8134 (Springer,
Heidelberg, 2013), pp. 381–399

[18] J. Brendel, M. Fischlin, F. Günther, C. Janson, PRF-ODH: relations, instantiations, and impossibility
results, in CRYPTO 2017, Part III LNCS, vol. 10403 (Springer, Heidelberg, 2017), pp. 651–681

[19] R. Canetti, O. Goldreich, S. Halevi, The random oracle methodology, revisited, in Journal of the ACM
(JACM) 51.4 (2004), pp. 557–594

https://eprint.iacr.org/2018/1037
https://eprint.iacr.org/2018/1037
http://eprint.iacr.org/2015/374
https://chatsecure.org/blog/chatsecure-v4-released/
http://eprint.iacr.org/2016/1028
http://eprint.iacr.org/2016/1028
https://www.eff.org/deeplinks/2016/03/punished-forparadox-brazils-facebook
https://www.eff.org/deeplinks/2016/03/punished-forparadox-brazils-facebook

A Formal Security Analysis of the Signal Messaging Protocol 1981

[20] R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme, in EUROCRYPT 2003,
LNCS, vol. 2656 (Springer, Heidelberg, 2003), pp. 255–271

[21] R. Canetti, H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels,
in EUROCRYPT 2001, LNCS, vol. 2045 (Springer, Heidelberg, 2001), pp. 453–474

[22] K. Cohn-Gordon, C. Cremers,Mind the Gap: Where Provable Security and Real-World Messaging Don’t
Quite Meet. Cryptology ePrint Archive, Report 2017/982 (2017). http://eprint.iacr.org/2017/982

[23] K. Cohn-Gordon, C. Cremers, L. Garratt, On Post-Compromise Security. (A shorter version of this paper
appears at CSF 2016) (2016). http://eprint.iacr.org/2016/221

[24] Conversations. https://conversations.im/ (visited on 07/2016)
[25] C. Cremers, M. Feltz, One-round Strongly Secure Key Exchange with Perfect Forward Secrecy and

Deniability. Cryptology ePrint Archive, Report 2011/300 (2011). http://eprint.iacr.org/2011/300
[26] C. Cremers, M. Horvat, S. Scott, T. van der Merwe, Automated analysis and verification of TLS 1.3:

0-RTT, resumption and delayed authentication, in 2016 IEEE Symposium on Security and Privacy (IEEE
Computer Society Press, 2016)

[27] J.P. Degabriele, A. Lehmann, K.G. Paterson, N.P. Smart, M. Strefler, On the joint security of encryption
and signature in EMV, in CT-RSA 2012, LNCS, vol. 7178 (Springer, Heidelberg, 2012), pp. 116–135

[28] M. Di Raimondo, R. Gennaro, H. Krawczyk, Deniable authentication and key exchange, in ACM CCS
2006 (ACM Press, 2006), pp. 400–409

[29] M.Di Raimondo, R. Gennaro, H. Krawczyk, Secure off-the-recordmessaging, inWPES. (ACM,Alexan-
dria, VA, 2005), pp. 81–89

[30] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 handshake
protocol candidates, in ACM CCS 2015 (ACM Press, 2015), pp. 1197–1210

[31] F. Betül Durak, S. Vaudenay, Bidirectional asynchronous ratcheted key agreement without key-update
primitives, in IACR Cryptology ePrint Archive 2018 (2018), p. 889. https://eprint.iacr.org/2018/889

[32] Electronic Frontier Foundation, Secure messaging scorecard (2016). https://www.eff.org/node/82654
[33] Facebook. Messenger Secret Conversations, Technical report (2016). https://fbnewsroomus.files.

wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf (visited on 07/2016)
[34] M. Fischlin, F. Gúnther, Multi-stage key exchange and the case of Google’s QUIC protocol, in ACM

CCS 2014 (ACM Press, 2014), pp. 1193–1204
[35] T. Frosch, C.Mainka, C. Bader, F. Bergsma, J. Schwenk, T. Holz,How Secure is TextSecure? Cryptology

ePrint Archive, Report 2014/904 (2014). http://eprint.iacr.org/2014/904 (Version from April 5, 2016)
[36] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, T. Holz, How secure is TextSecure?, in 1st

IEEE European Symposium on Security and Privacy (IEEE Computer Society Press, 2016)
[37] C. Garman, M. Green, G. Kaptchuk, I. Miers, M. Rushanan, Dancing on the lip of the volcano: chosen

ciphertext attacks on Apple iMessage, in Usenix Security 2016 (2016)
[38] Wire Swiss GmbH. Wire Security Whitepaper, in (Aug. 17, 2018). https://wire-docs.wire.com/

download/Wire+Security+Whitepaper.pdf (visited on 01/2019)
[39] S. Goldwasser, Y.T. Kalai, Cryptographic assumptions: a position paper, in IACR Cryptology ePrint

Archive 2015 (2015), p. 907
[40] M.D. Green, I. Miers, Forward secure asynchronous messaging from puncturable encryption, in 2015

IEEE Symposium on Security and Privacy (IEEE Computer Society Press, 2015), pp. 305–320
[41] M. Hamburg, Ed448-Goldilocks, a New Elliptic Curve. Cryptology ePrint Archive, Report 2015/625

(2015). http://eprint.iacr.org/2015/625
[42] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, On the security of TLS-DHE in the standard model, in

CRYPTO 2012, LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 273–293
[43] T. Jager, J. Schwenk, J. Somorovsky, On the security of TLS 1.3 and QUIC against weaknesses in

PKCS#1 v1.5 Encryption, in ACM CCS 2015 (ACM Press, 2015), pp. 1185–1196
[44] D. Jost, U.Maurer, M.Mularczyk, Efficient ratcheting: almost-optimal guarantees for secure messaging,

in IACR Cryptology ePrint Archive 2018 (2018), p. 954. https://eprint.iacr.org/2018/954
[45] N. Kobeissi, K. Bhargavan, B. Blanchet, Automated verification for secure messaging protocols and

their implementations: a symbolic and computational approach, in 2nd IEEE European Symposium on
Security and Privacy (IEEE Computer Society Press, 2017)

[46] N. Koblitz, A.J. Menezes, The random oracle model: a twenty-year retrospective, in Designs, Codes and
Cryptography 77.2-3 (2015), pp. 587–610

http://eprint.iacr.org/2017/982
http://eprint.iacr.org/2016/221
https://conversations.im/
http://eprint.iacr.org/2011/300
https://eprint.iacr.org/2018/889
https://www.eff.org/node/82654
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
http://eprint.iacr.org/2014/904
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
http://eprint.iacr.org/2015/625
https://eprint.iacr.org/2018/954

1982 K. Cohn-Gordon et al.

[47] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, D. Venturi, (De-)constructing TLS 1.3, in
INDOCRYPT 2015, LNCS, vol. 9462 (Springer, Heidelberg, 2015), pp. 85–102

[48] H.Krawczyk, Cryptographic extraction and key derivation: theHKDF scheme, inCRYPTO 2010, LNCS,
vol. 6223 (Springer, Heidelberg, 2010), pp. 631–648

[49] H. Krawczyk, HMQV: a high-performance secure Diffie–Hellman protocol, in CRYPTO 2005, LNCS,
vol. 3621 (Springer, Heidelberg, 2005), pp. 546–566

[50] C. Kudla, K.G. Paterson, Modular security proofs for key agreement protocols, in ASIACRYPT 2005,
LNCS, vol. 3788 (Springer, Heidelberg, 2005), pp. 549–565

[51] B.A. LaMacchia, K. Lauter, A. Mityagin, Stronger security of authenticated key exchange, in ProvSec
2007, LNCS, vol. 4784 (Springer, Heidelberg, 2007), pp. 1–16

[52] A. Langley. Pond. (2014). https://pond.imperialviolet.org/ (visited on 06/22/2015)
[53] X. Li, J. Xu, Z. Zhang, D. Feng, H. Hu, Multiple handshakes security of TLS 1.3 candidates, in 2016

IEEE Symposium on Security and Privacy. (IEEE Computer Society Press, 2016), pp. 486–505
[54] libsignal-protocol-java.GitHub repository, commit hash4a7bc1667a68c1d8e6af0151

be30b84b94fd1e38 (2016). https://github.com/WhisperSystems/libsignal-protocol-java (visited
on 07/2016)

[55] M. Marlinspike, Advanced Cryptographic Ratcheting. Blog. 2013. https://whispersystems.org/blog/
advanced-ratcheting/ (visited on 07/2016)

[56] A. Menezes, B. Ustaoglu, On reusing ephemeral keys in Diffie–Hellman key agreement protocols, in
Int. J. Appl. Cryptol. 2.2 (2010), pp. 154–158

[57] V. Moscaritolo, G. Belvin, P. Zimmermann, Silent Circle Instant Messaging Protocol Specifi-
cation. Technical report Archived from the original. Dec. 5, 2012. https://web.archive.org/web/
20150402122917/, https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_
paper.pdf (visited on 07/2016)

[58] T.Okamoto,D. Pointcheval, TheGap-problems: a new class of problems for the security of cryptographic
schemes, in PKC 2001, LNCS, vol. 1992 (Springer, Heidelberg, 2001), pp. 104–118

[59] K.G. Paterson, J.C.N. Schuldt, M. Stam, S. Thomson, On the joint security of encryption and signature,
Revisited, in ASIACRYPT 2011, LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 161–178

[60] T. Perrin, Double Ratchet Algorithm. GitHub wiki (2016). https://github.com/trevp/double_ratchet/wiki
(visited on 07/22/2016)

[61] T. Perrin, The XEdDSA and VXEdDSA Signature Schemes. Specification (2016). https://whispersystems.
org/docs/specifications/xeddsa/ (visited on 07/2016)

[62] T. Perrin, M. Marlinspike, The Double Ratchet Algorithm. Specification (2016). https://whispersystems.
org/docs/specifications/doubleratchet/ (visited on 01/2017)

[63] T. Perrin, M. Marlinspike, The X3DH Key Agreement Protocol. Specification (2016). https://
whispersystems.org/docs/specifications/x3dh/ (visited on 01/2017)

[64] B. Poettering, P. Rösler, Towards bidirectional ratcheted key exchange, in Advances in Cryptology—
CRYPTO 2018—38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19–23, 2018, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10991 (Springer, 2018), pp.
3–32. ISBN:978-3-319-96883-4. https://doi.org/10.1007/978-3-319-96884-15C_1

[65] J. Reardon, D. Basin, S. Capkun, SoK: secure data deletion, in 2013 IEEE Symposium on Security and
Privacy (SP), (2013), pp. 301–315

[66] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. Internet-Draft draft-ietf-tls-tls13–
14 (2016). http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-14.txt

[67] P. Rogaway, Authenticated-encryption with associated-data, in ACM CCS 2002 (ACM Press, 2002), pp.
98–107

[68] P. Rösler, C. Mainka, J. Schwenk, More is less: on the end-to-end security of group chats in Signal,
WhatsApp, and Threema, in 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
(London, UK, April 24–26), 2018 (IEEE, 2018), pp. 415–429. ISBN:978-1-5386-4228-3. https://doi.
org/10.1109/EuroSP.2018.00036

[69] A. Straub, OMEMO Encryption. Oct. 25, 2015. https://conversations.im/xeps/multi-end.html (visited
on 07/2016)

[70] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, M. Smith, SoK: secure messaging, in
2015 IEEE Symposium on Security and Privacy (IEEE Computer Society Press, 2015), pp. 232–249

https://pond.imperialviolet.org/
https://github.com/WhisperSystems/libsignal-protocol-java
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/
https://web.archive.org/web/20150402122917/
https://web.archive.org/web/20150402122917/
https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://github.com/trevp/double_ratchet/wiki
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/x3dh/
https://whispersystems.org/docs/specifications/x3dh/
https://doi.org/10.1007/978-3-319-96884-15C_1
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-14.txt
https://doi.org/10.1109/EuroSP.2018.00036
https://doi.org/10.1109/EuroSP.2018.00036
https://conversations.im/xeps/multi-end.html

A Formal Security Analysis of the Signal Messaging Protocol 1983

[71] N. Unger, I. Goldberg, Deniable key exchanges for secure messaging, in ACM CCS 2015 (ACM Press,
2015), pp. 1211–1223

[72] WhatsApp, WhatsApp Encryption Overview. Technical report (2016). https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf (visited on 07/2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	A Formal Security Analysis of the Signal Messaging Protocol
	1. Introduction
	1.1. Contributions
	1.2. Additional Related Work

	2. The Core Signal Protocol
	2.1. Protocol Overview
	2.2. Notation—Cryptographic Primitives
	2.3. Notation—Sessions and Stages
	2.4. Notation—Keys
	2.5. The Protocol
	2.6. Registration Stage—
	2.7. Session Setup Stage—
	2.7.1. Receiving Ephemerals
	2.7.2. Computing the Shared Secrets

	2.8. Symmetric-Ratchet Stage—
	2.9. Asymmetric-Ratchet Stage—
	2.10. Memory Contents
	3. Threat Models
	4. Security Model
	4.1. Multi-stage Key Exchange Protocol
	4.1.1. Instantiating Signal in Terms of Definition 1

	4.2. Key Indistinguishability Experiment
	4.2.1. Session Identifiers

	4.3. Freshness
	4.3.1. Session Setup Stage [0]
	4.3.2. Asymmetric Stages
	4.3.3. Symmetric Stages

	5. Security Analysis

	6. Limitations
	7. Conclusions and Future Work
	Acknowledgements
	Appendix A. On Hardness Assumptions and the Random Oracle Model (ROM)
	Appendix B. Security Proof
	B.1. Protocol Modifications for Key Indistinguishability
	B.2. Proof Structure Overview
	B.3. Proof of the Main Theorem
	Appendix C. Achieving a Standard Model Proof of the Signal Protocol
	References

