
Analysis of Indexing Structures for Immutable Data
Cong Yue

National University of
Singapore

yuecong@comp.nus.edu.sg

Zhongle Xie
National University of

Singapore
zhongle@comp.nus.edu.sg

Meihui Zhang
Beijing Institute of

Technology
meihuizhang@bit.edu.cn

Gang Chen
Zhejiang University

cg@zju.edu.cn

Beng Chin Ooi
National University of

Singapore
ooibc@comp.nus.edu.sg

Sheng Wang
Alibaba Group

sh.wang@alibaba-
inc.com

Xiaokui Xiao
National University of

Singapore
xkxiao@nus.edu.sg

ABSTRACT
In emerging applications such as blockchains and collab-
orative data analytics, there are strong demands for data
immutability, multi-version accesses, and tamper-evident
controls. To provide efficient support for lookup and merge
operations, three new index structures for immutable data,
namely Merkle Patricia Trie (MPT), Merkle Bucket Tree
(MBT), and Pattern-Oriented-Split Tree (POS-Tree), have
been proposed. Although these structures have been adopted
in real applications, there is no systematic evaluation of
their pros and cons in the literature, making it difficult for
practitioners to choose the right index structure for their
applications.

To alleviate the above problem, we present a comprehen-
sive analysis of the existing index structures for immutable
data, and evaluate both their asymptotic and empirical perfor-
mance. Specifically, we show that MPT, MBT, and POS-Tree
are all instances of a recently proposed framework, dubbed
Structurally Invariant and Reusable Indexes (SIRI). We propose
to evaluate the SIRI instances on their index performance
and deduplication capability. We establish the worst-case
guarantees of each index, and experimentally evaluate all
indexes in a wide variety of settings. Based on our theoreti-
cal and empirical analysis, we conclude that POS-Tree is a
favorable choice for indexing immutable data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389773

CCS CONCEPTS
• Information systems→ Database performance eval-
uation; Deduplication; Version management; B-trees.

KEYWORDS
indexing, immutable data, deduplication, versioning

ACM Reference Format:
Cong Yue, Zhongle Xie, Meihui Zhang, Gang Chen, Beng Chin Ooi,
Sheng Wang, and Xiaokui Xiao. 2020. Analysis of Indexing Struc-
tures for Immutable Data. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3318464.3389773

1 INTRODUCTION
Accurate history of data is required for auditing and track-

ing purposes in numerous practice settings. In addition, data
in the cloud is often vulnerable to malicious tampering. To
support data lineage verification and mitigate malicious data
manipulation, data immutability is essential for applications,
such as banking transactions and emerging decentralized
applications (e.g., blockchain, digital banking, and collabora-
tive analytics). From the data management perspective, data
immutability leads to two major challenges.
First, it is challenging to cope with the ever-increasing

volume of data caused by immutability. An example is the
sharing and storage of the data for healthcare analytics. Data
scientists and clinicians oftenmake relevant copies of current
and historical data in the process of data analysis, cleansing,
and curation. Such replicated copies could consume an enor-
mous amount of space and network resources. To illustrate,
let us consider a dataset that has 100,000 records initially, and
it receives 1,000 record updates in each modification. Figure 1
shows the space and time required to handle the increasing
number of versions1. Observe that (i) the space and time
overheads are significant if all versions are stored separately,

1Run with Intel(R) Xeon(R) E5-1620 v3 CPU and 1 Gigabit Ethernet card.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

925

https://doi.org/10.1145/3318464.3389773
https://doi.org/10.1145/3318464.3389773
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3318464.3389773&domain=pdf&date_stamp=2020-05-31

 0

 2

 4

 6

 8

 10

 12

 14

 16

100 200 300 400 500
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180
S

to
ra

ge
 u

sa
ge

 (
G

B
)

T
im

e
(S

ec
on

ds
)

#Versions

Storage - Deduplicated
Storage - Raw
Time - Deduplicated
Time - Raw

Figure 1: Data storage and transmission time im-
proved by deduplication

and (ii) such overheads could be considerably reduced if we
can deduplicate the records in different versions.

The second challenge is that in case a piece of data is tam-
pered with (e.g., malicious manipulation of crypto-currency
wallets or unauthorized modifications of patients’ lab test
data), we have to detect it promptly. To address this challenge,
the system needs to incorporate tamper-resistant techniques
to support the authentication and recovery of data, to ensure
data immutability. Towards this end, a typical approach is to
adopt cryptographic methods for tamper mitigation, which,
however, considerably complicates the system design.

Most existing data management solutions tackle the above
two challenges separately, using independent orthogonal
methods. In particular, they typically (i) ensure tamper evi-
dence using cryptographic fingerprints and hash links [17],
and (ii) achieve deduplication with delta encoding [11, 13].
Such decoupled design incurs unnecessary overheads that
could severely degrade the system performance. For example,
in state-of-the-art blockchain systems such as Ethereum [5]
and Hyperledger [6], tamper evidence is externally defined
and computed on top of the underlying key-value store (e.g.,
LevelDB [2] or RocksDB [3]), which leads to considerable
processing costs. In addition, delta-encoding-based dedupli-
cation (e.g., in Decibel [13]) requires a reconstruction phase
before an object can be accessed, which renders data access-
ing rather inefficient.

Motivated by the above issues, recent work [6, 12, 21, 22]
has explored data management methods to provide native
supports for both tamper evidence and deduplication fea-
tures. This results in three new index structures for im-
mutable data, namely,Merkle Patricia Trie (MPT) [22],Merkle
Bucket Tree (MBT) [6], and Pattern-Oriented-Split Tree (POS-
Tree) [21]. To the best of our knowledge, there is no sys-
tematic comparison of these three index structures in the
literature, although there exists experimental study in other
indexing features [24]. Hence, the characteristics of each
structure are not fully understood. This renders it difficult

for practitioners to choose the right index structure for their
applications.

To fill the aforementioned gap, this paper presents a com-
prehensive analysis of MPT, MBT, and POS-Tree. Specifically,
we make the following contributions:

• We show that MPT, MBT, and POS-Tree are all in-
stances of a recently proposed framework, named Struc-
turally Invariant and Reusable Indexes (SIRI) [21]. Based
on this, we identify the common characteristics of
them in terms of tamper evidence and deduplication.

• We propose a benchmarking scheme to evaluate SIRI
instances based on five essential metrics: their effi-
ciency for four index operations (i.e., lookup, update,
comparison, and merge), as well as their deduplica-
tion ratios, which is a new metric that we formulate
to quantify each index’s deduplication effectiveness.
We establish the worst-case guarantee of each index
in terms of these five metrics.

• We experimentally evaluate all three indexes in a va-
riety of settings. We demonstrate that they perform
much better than conventional indexes in terms of
the effectiveness of deduplication. Based on our ex-
perimental results, we conclude that POS-Tree is a
favorable choice for indexing immutable data.

More detailed analysis and experimental results are pre-
sented in the technical report [25].

2 RELATEDWORK

2.1 Immutability and Tamper Evidence
Immutable data are becoming common in a highly regulated
industry and emerging applications. For example, blockchains
[5, 6, 9, 17] maintain immutable ledgers, which keep all his-
torical versions of the system status. LineageChain [19] en-
ables fine-grained, secure and efficient data provenance on
blockchain and needs immutability for verification. Similarly,
collaborative applications [1, 8] maintain the whole evolu-
tionary history of datasets and the analytic results derived,
so as to enable provenance-related functionalities, such as
tracking, branching, and rollback.
In addition, applications such as digital banking [4] and

blockchains [5, 6, 17] demand the system should maintain
the accurate history of data, protect their data from mali-
cious tampering, and trigger alerts when malicious tamper-
ing occur. To serve such purposes, verifiable databases (i.e.,
Concerto [7], QLDB [20]) and blockchain services (i.e., Mi-
crosoft Azure Blockchain [15]) often use cryptographic hash
functions (e.g., SHA) and Merkle trees [14] to verify the data
integrity. SIRI , with the built-in support for tamper evidence,
is a good candidate for the above systems.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

926

A Merkle tree is a tree of hashes, where the leaf nodes
are the cryptographic hashes calculated from blocks of data
while the non-leaf nodes are the hashes of their immediate
children. The root hash is also called the “digest” of the
data. To verify a record, it requires a “proof” of data, which
contains the nodes on the path to the root. The new root
hash is recalculated recursively and equality is checked with
the previously saved digest.

2.2 Data-Level Deduplication
Deduplication approaches have been proposed to reduce the
overhead of storage consumption when maintaining multi-
versioned data. For example, Decibel [13] uses delta encod-
ing, whereby the system only stores the differences, called
delta, between the new version and the previous version of
data. Consequently, it is effective to manage data versions
when the deltas are small, despite the extra cost incurred dur-
ing data retrieval for reconstructing the specified version of
data. However, it is ineffective in removing duplicates among
non-consecutive versions or different branches of the data.
Though some algorithms choose a more precedent version
that has the smallest differences as the parent to improve
the efficiency of the deduplication, it involves additional
complexity to reconstruct a version.
To enable the removal of duplicates among any data ver-

sions, chunk-based deduplication can be applied. Unlike delta
encoding, this approach works across independent objects. It
is widely used in file systems [18, 23], and is a core principle
of git. In this approach, files are divided into chunks, each
of which is given a unique identifier calculated from algo-
rithms like collision-resistant hashing. chunks with the same
identifier can be eliminated. Chunk-based deduplication is
highly effective in removing duplicates for large files that
are rarely modified. In case an update leads to a change of all
subsequent chunks, i.e., the boundary-shifting problem [10],
content-defined chunking [16] can be leveraged to avoid
expensive re-chunking.

3 STRUCTURALLY INVARIANT AND
REUSABLE INDEXES

Structurally Invariant and Reusable Indexes (SIRI) are a
new family of indexes recently proposed [21] to efficiently
support tamper evidence and effective deduplication.

3.1 Background and Notations
In addition to basic lookup and update operations, the ulti-
mate goal of SIRI is to provide native data versioning, dedu-
plication and tamper evidence features. Consequently, data
pages in SIRI must not only support efficient deduplication

4

1 2 3 4 7 8

4 7

1 2 3 4 5 7 8

4 7

1 2 3 4 5 7 8 9

+5

+9

4

1 2 3 4 7 8

4 8

1 2 3 4 7 8 9

4 8

1 2 3 4 5 7 8 9

+9

+5

Figure 2: Two B+-trees containing the same entries but
with different internal structures [21]

(to tackle the amount of replication arising from version-
ing) but also cryptographic hashing (to facilitate tamper
evidence).

To better elaborate the SIRI candidates, we use the follow-
ing notations in the remaining of this paper. The indexing
dataset is denoted as D = {𝐷0, 𝐷1, ..., 𝐷𝑛} where 𝐷𝑖 repre-
sents its 𝑖-th version. I is employed to represent SIRI struc-
tures, and 𝐼 stands for one of its instances. The key set stored
in 𝐼 is set as 𝑅(𝐼) = {𝑟1, 𝑟2, ..., 𝑟𝑛}, where 𝑟𝑖 denotes the 𝑖-th
key. 𝑃 (𝐼) = {𝑝1, 𝑝2, ..., 𝑝𝑛} stands for the internal node set of
𝐼 , where 𝑝𝑖 represents the 𝑖-th node.

3.2 Formal Definition
We provide a formal and precise definition of SIRI adapted

from [21] as follows.

Definition 3.1. An index class I belongs to SIRI if it has
the following properties:
(1) Structurally Invariant. If 𝐼 and 𝐼 ′ are two instances of

I, then 𝑃 (𝐼) = 𝑃 (𝐼 ′) ⇐⇒ 𝑅(𝐼) = 𝑅(𝐼 ′).
(2) Recursively Identical. If 𝐼 and 𝐼 ′ are two instances of

I and 𝑅(𝐼) = 𝑅(𝐼 ′) + 𝑟 , where 𝑟 ∉ 𝑅(𝐼 ′), then |𝑃 (𝐼) ∩
𝑃 (𝐼 ′) | ≫ |𝑃 (𝐼) − 𝑃 (𝐼 ′) |.

(3) Universally Reusable. For any instance 𝐼 of I, there
always exists node 𝑝 ∈ 𝑃 (𝐼) and another instance 𝐼 ′
such that |𝑃 (𝐼 ′) | > |𝑃 (𝐼) |) and 𝑝 ∈ 𝑃 (𝐼 ′).

Definition 3.1 states that SIRI must possess three proper-
ties. The first property, Structurally Invariant, ensures that
the order of update operations does not affect the internal
structure of the index, while the second property, Recursively
Identical, guarantees the efficiency when constructing a large
instance from small ones. The third property, Universally
Reusable, secures that the nodes of the index could be shared
among different instances. In practice, these properties can
be exploited to make SIRI time- and space-efficient.
It is non-trivial to construct a SIRI instance from con-

ventional structures. Take the multi-way search tree as an
example. Such a structure is Recursively Identical since only

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

927

Search(8) Insert(10) encode(‘0’) = 0x30 g
encode(‘1’) = 0x31 g
…
encode(‘9’) = 0x39 g
encode(‘10’) = 0x31 30 g

Node 5BN

0 1 2 3 4 5 6 7 8 9 a b c d e f g(value)
v1

Node 4
EP value

LN

g v8

Node 1
EP child hash

EN

3 Hash(Node 2)

Node 3
EP value

LN

g v1

Node 2BN

0 1 2 3 4 5 6 7 8 9 a b c d e f g(value)
Null

Node 6
EP value

LN

0g v10

… … …

EN
BN
LN

Extension Node
Branch Node

Leaf Node

EP encodedPath

Figure 3: Merkle Patricia Trie (MPT)

a small part of nodes is changed in the new version of the
instance when an update operation is performed. Further, the
usage of copy-on-write implementation naturally enables
node sharing among versions and branches. Hence, it can
be Globally Reusable when applying this technique. How-
ever, it may not be Structurally Invariant. Take B+-tree as
an example, Figure 2 illustrates that identical sets of items
may lead to variant structures. Meanwhile, hash tables are
not Recursively Identical when they require periodical recon-
structions as the entire structure may be updated and none
of the nodes can be reused.
Surprisingly, tries, or radix trees, can meet all the three

properties with copy-on-write implementation. Firstly, they
are Structurally Invariant since the position of the node only
depends on the sequence of the stored key bytes and conse-
quently, the same set of keys always leads to the same tree
structure. Secondly, being a multi-way search tree, they can
be Recursively Identical and Globally Reusable as mentioned
above. However, they may end up in higher tree heights,
leading to poor performance caused by increasing traversal
cost, as shown in Section 4.

3.3 SIRI Representatives
In this section, we elaborate on the three representatives

of SIRI , namely MPT, MBT, and POS-Tree.

3.3.1 Merkle Patricia Trie.
Merkle Patricia Trie (MPT) is a radix tree with crypto-

graphic authentication. Similar to the traditional radix tree,
the key is split into sequential characters, namely nibbles.
There are four types of nodes in MPT, namely branch, leaf ,
extension and null. The structures of those nodes are illus-
trated in Figure 3: (1) branch node consists of a 16-element
array and a value. Each element, called “branch”, of the array
is indexing a corresponding child node and stores a nibble.

Node 1
h(N2) h(N3)

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6 Bucket 7 Bucket 8

Node 2
h(N4) h(N5)

Node 3
h(N6) h(N7)

Node 4
h(B1) h(B2)

Node5
h(B3) h(B4)

Node 6
h(B5) h(B6)

Node 7
h(B7) h(B8)

Search(8) Insert(10) hash(8) % 8 = 4
hash(10) % 8 = 7

Figure 4: Merkle Bucket Tree (MBT)

(2) leaf node contains a byte string, i.e., a compressed path
called “encodedPath”, and a value. (3) extension node also
contains encodedPath and a pointer to the next node. (4)
null node includes an empty string indicating that the node
contains nothing. Similar to Merkle Tree, the whole MPT
can be rolled up to a single cryptographic hash for tamper
evidence. The most well-known usage of this data structure
is in Ethereum [5], one of the largest blockchain systems in
the world.

Lookup. The lookup procedure for key “8” is illustrated
in Figure 3. The key is first encoded as “0x38 g”. Then, each
character of the encoded key is used to match with the en-
codedPath in an extension node, or to select the path in a
branch node, from left to right. For this example, the first
character “3” matches the root node’s encodedPath, there-
fore, it navigates to its child, Node 2. Then it takes the branch
“8” since “8” equals to the second character in the encoded
key. Finally, the traversal reaches the leaf node and ends with
the value “v8” output.

Insert. To insert data in MPT, the index first locates the
position of the given key as in the lookup operation. Once
it reaches a null node, a leaf node containing the remain-
ing part of the encoded key and the value is created. For
example, in Figure 3, when we insert key “1” (“0x31 g”), if
branch “1” in Node 2 is empty, a new node (“g”, v1) is created
and pointed by branch “1”. In case there is a partial match
at extension node, a new branch node at diverging byte is
created, appended with original and new child. The insertion
of key “10” in the figure can illustrate this procedure, where
the path is diverged at Node 3. Hence, Node 3 is replaced by
Node 5 with a newly created Node 6 attached.

3.3.2 Merkle Bucket Tree.
Merkle Bucket Tree (MBT) is a Merkle tree built on top of

a hash table as shown in Figure 4. The bottom most level of
MBT is a set of buckets and the cardinality of the bucket set is
called capacity. Data entries are hashed to these buckets, and
the entries within each bucket are arranged in sorted order.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

928

The internal nodes are formed by the cryptographic hashes
computed from their intermediate children. The number
of children an internal node has is called fanout. In MBT,
capacity and fanout are pre-defined and cannot be changed
in its life cycle.

Lookup. To perform an MBT index lookup, we first cal-
culate the hash of the target key and obtain the index of
the bucket where the data resides. Due to the copy-on-write
restrictions, we are unable to fetch the bucket directly and
hence we then use the bucket number to calculate the traver-
sal path from the root node to the leaf node. The calculation
is generally a trivial reverse simulation of the complete multi-
way search tree search algorithm. For example in Figure 4,
key “8” falls into Bucket 4 after the hashing, and we accord-
ingly get all node index on the path starting from the leaf.
Finally, we follow the path to reach the bucket. The records
in the bucket are scanned using binary search to find the
target key after the retrieval of the bucket node.

Insert. The insert operation of MBT undergoes similar
procedures. It first performs a lookup to check the existence
of the target key. For example, the inserting key “10” falls
into Bucket 7. Then Bucket 7 is fetched following the lookup
process, and the key is inserted to Bucket 7 in ascending
order. Finally, the hashes of the bucket and the nodes are
recalculated recursively.
The design of MBT undoubtedly takes the advantages of

Merkle tree and the hash table. On the one hand, MBT offers
tamper evidence with a low update cost since only the set
of nodes lying on the lookup path needs to be recalculated.
On the other hand, the data entries can be evenly distributed
due to the nature of the hash buckets in the bottom level.

3.3.3 Pattern-Oriented-Split Tree.
Pattern-Oriented-Split Tree (POS-Tree) is a probabilis-

tically balanced search tree proposed in [21]. The struc-
ture can be treated as a customized Merkle tree built upon
pattern-aware partitions of the dataset, as shown in Fig-
ure 5. The bottom most data layer is an ordered sequence
of data records. The records are partitioned into blocks us-
ing a sliding-window approach and such blocks form the
leaf nodes. That is, for a byte sequence within a fixed-sized
window, starting from the first byte of the data, a Rabin fin-
gerprint is computed to match a certain boundary pattern.
An example pattern can be the last 8 bits of Rabin fingerprint
equaling to “1”. The window shifts forward to repeat the pro-
cess until it finds a match, where the node boundary is set
to create the leaf node. The internal layers are formed by a
sequence of split keys and cryptographic hashes of the nodes
in the lower layer. Since the contents in the internal layers
already contain hash values, we directly use them to match
the boundary pattern instead of repeatedly computing the
hash within a sliding window. Such strategy improves the

Search(8) Insert(91) Insert(531)

1 7 90 52992 531 533… 91… … …

… …
Node 4
83 … 89
hh … h

Node 5
9592 … 169
hh … h

Node 6
…441 533 539
…h h h

Node 7
…441 531
…h h

Node 8
539533

hh

Node 2
89 169 351
h h h

Node 3
539437 … 999

hh … h

Node 9
531437 539 …

hh h …

Node 1
351 999

h h

hash(window) = … 11111111

84

Figure 5: Pattern-Oriented-Splitting Tree (POS-Tree)

performance of POS-Tree by reducing the number of hash
computations, while preserving the randomness of chunk-
ing.

Lookup. The lookup procedure of POS-Tree is similar
to B+-tree. Starting from the root node, it performs binary
search to locate the child node containing the target key.
When it reaches the leaf node, a binary search is performed
to find the exact key. As the example shown in Figure 5, the
key “8” is fetched through the orange path. It goes through
Node 2, which has a key range of (-∞, 351], and Node 4,
which has a key range of (-∞, 89].

Insert. To perform an insert operation, POS-Tree first
finds the position of the inserting key and then inserts it into
the corresponding leaf node. Next, it starts the boundary
detection from the first byte of the leaf node, and stops when
detecting an existing boundary or reaching the last byte
of the layer. For example, when insert key “91” into the
tree shown in Figure 5, a boundary detection is performed
from Node 5. It ends upon reaching the existing boundary
of Node 5. Another instance in the figure is the insertion of
key “531”. A new boundary is found at element 531, and the
traverse stops when finding the existing boundary of Node
6. Therefore, Node 6 splits into Node 7 and Node 8, and the
new split keys are propagated to the parent node.

The pattern-aware partitioning of POS-Tree enhances the
deduplication capabilities, and making the structure of the
tree depending only on the data held. Such Structurally In-
variant property supports efficient diff andmerge. Moreover,
the B+-tree-like node structure enables efficient indexing by
comparing the split keys to navigate the paths.

3.4 Theoretical Comparison
In this section, we provide a theoretical comparison of

the three SIRI representatives discussed previously. The de-
tails on the computation and analysis can be found in [25].
We first list the theoretical bounds for common operations,
i.e. lookup, update, diff and merge. In addition, we define

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

929

Table 1: Operation bound

POS-Tree MBT MPT

Lookup 𝑂 (log𝑚 𝑁) 𝑂 (log𝑚 𝐵 + log2
𝑁
𝐵
) 𝑂 (𝐿)

Update 𝑂 (log𝑚 𝑁) 𝑂 (log𝑚 𝐵 + 𝑁
𝐵
) 𝑂 (𝐿)

Diff 𝑂 (𝛿 log𝑚 𝑁) 𝑂 (𝛿 (log𝑚 𝐵 + 𝑁
𝐵
)) 𝑂 (𝛿𝐿)

Merge 𝑂 (𝛿 log𝑚 𝑁) 𝑂 (𝛿 (log𝑚 𝐵 + 𝑁
𝐵
)) 𝑂 (𝛿𝐿)

deduplication ratio as a metric for the measurement of the
efficiency of deduplication provided by SIRI .

3.4.1 Operation Bound. A summary of the operation bound
for each structure is outlined in Table 1, where 𝑁 is the total
number of data held in the index, 𝐿 is the maximum length
of the key, 𝐿 is the average length of the key, 𝐵 represents the
capacity of MBT,𝑚 denotes the fanout of MBT and POS-Tree,
and 𝛿 is used to denote the different records between two
versions of the index.

In the worst case, MPT has higher tree height than a bal-
anced search tree, i.e., L >𝑂 (log𝑚 𝑁), and therefore performs
worse than POS-Tree. For MBT, the traverse cost log𝑚 𝐵 is
lower than other structures when in assumption of 𝐵 < 𝑁

while the node scanning time log2
𝑁
𝐵
and creation time 𝑁

𝐵

are dominating when 𝑁 >> 𝐵. We can conclude from the
table that POS-Tree is efficient in general cases, while MBT is
a good choice when the dataset maintains a proper 𝑁

𝐵
ratio.

3.4.2 Deduplication Ratio. Persistent (or immutable) data
structures demand a large amount of space for maintaining
all historical versions. To alleviate space consumption pres-
sure, the feasibility of detecting and removing duplicated
data portions plays a critical role. To clearly quantify the
effectiveness of such properties, we define a measurement
called deduplication ratio as follows.

Definition 3.2. Suppose there is a set of index instances
𝑆 = {𝐼1, 𝐼2, ...𝐼𝑘 }, and each 𝐼𝑥 is composed of a set of nodes 𝑃𝑥 .
The number of bytes of a node set 𝑃 is denoted as 𝑏𝑦𝑡𝑒 (𝑃).
The deduplication ratio 𝜂 of 𝑆 is defined as follows:

𝜂 (𝑆) = 1 − 𝑏𝑦𝑡𝑒 (𝑃1 ∪ 𝑃2 ∪ ... ∪ 𝑃𝑘)
𝑏𝑦𝑡𝑒 (𝑃1) + 𝑏𝑦𝑡𝑒 (𝑃2) + ... + 𝑏𝑦𝑡𝑒 (𝑃𝑘)

,

The deduplication ratio 𝜂 quantifies the effectiveness of
node-level data deduplication (i.e., sharing) among related
indexes. It is the ratio between the overall bytes that can be
shared between different node sets and the total bytes used
for all the node sets. With a high 𝜂, the storage is capable
of managing massive “immutable” data versions without
bearing space consumption pressure. To simplify the analysis,
we assume that each instance differs its predecessor by ratio
𝛼 of a continuous key range. The deduplication analysis is
summarized in Table 2. Detailed analysis can be referred to
in our technical report [25].

Table 2: Deduplication ratio

POS-Tree MBT MPT

𝜂 = 1
2 − 𝛼

2 𝜂 = 1
2 − 𝛼

2 𝜂 ≥ 1
2 − 𝛼

2 (𝐿 ≥ 𝐿)
𝜂 ≤ 1

2 − 𝛼
2 (𝐿 ≤ 𝐿)

If we compare the analysis results of the three representa-
tives, we can conclude that MPT has the best deduplication
ratio under proper query workloads and datasets (meaning
𝐿 ≥ 𝐿). Meanwhile, POS-Tree and MBT have equal bound
for the deduplication ratio in this setting.

4 EXPERIMENTAL BENCHMARKING
In this section, we evaluate the three SIRI representatives,

namely POS-Tree, MBT and MPT with different measure-
ments. For more experiments, such as integration with sys-
tems, please refer to [25]. Our experiments are conducted on
a server with Ubuntu 14.04, which is equipped with an Intel
Xeon Processor E5-1650 processor (3.5GHz) and 32GB RAM.
To fairly compare the efficiency of the index structures in
terms of node quantity and size, we tune the size of each
index node to be approximately 1 KB. For each experiment,
the reported measurements are averaged over 5 runs.

4.1 Dataset and Implementation
We use a synthesized YCSB dataset and two real world

datasets, Wikipedia data dump2 and Ethereum transaction
data3, to conduct a thorough evaluation of SIRI. The details
of the setting can be found in [25].
We port the Ethereum’s implementation [5] of MPT to

our experiment environment, which adopts the path com-
paction optimization. The implementation of MBT is based
on the source code provided in Hyperledger Fabric 0.6 [6].
We further make it immutable and add index lookup logic,
which is missing in the original implementation. For POS-
Tree, we use the implementation in Forkbase [21]. Moreover,
we further apply batching techniques, taking advantage of
the bottom-up build order, to reduce the number of tree tra-
versal and hash calculations significantly. Lastly, to compare
SIRI and non-SIRI structures, we implement an immutable
B+-tree with tamper evidence support, called Multi-Version
Merkle B+-tree (MVMB+-Tree), as the baseline. We replace
the pointers stored in index nodes with the hash of their im-
mediate children and maintain an additional table from the
hash to the actual address. For all the structures, we adopt
node-level copy-on-write to achieve the data immutability.

2https://dumps.wikimedia.org/enwiki/
3https://cloud.google.com/blog/products/data-analytics/ethereum-
bigquery-public-dataset-smart-contract-analytics

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

930

https://dumps.wikimedia.org/enwiki/
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

100

101

102

1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

x1
0

3)

#Records (x104)

POS-Tree
MBT

MPT
MVMB+-Tree

(a) 𝜃 = 0, write ratio = 0.5

 0

 20

 40

 60

 80

 100

Read Mixed Write

T
hr

ou
gh

pu
t (

x1
0

3)

Workload

POS-Tree
MBT

MPT
MVMB+-Tree

(b) #Records = 640,000, 𝜃 = 0

 0

 5

 10

 15

 20

 25

 30

0 0.5 0.9

T
hr

ou
gh

pu
t (

x1
0

3)

Skewness (θ)

POS-Tree
MBT

MPT
MVMB+-Tree

(c) #Records = 640,000, write ratio = 0.5

Figure 6: Throughput on YCSB

 0

 5

 10

 15

 20

 25

 30

Read Write

T
hr

ou
gh

pu
t (

x1
0

3)

Workload

POS-Tree
MBT

MPT
MVMB+-Tree

(a) Wiki

10-1

100

101

102

read write

T
hr

ou
gh

pu
t (

x1
0

3)

Workload

POS-Tree
MBT

MPT
MVMB+-Tree

(b) Ethereum Transaction

Figure 7: Throughput on real world datasets

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200 250
La

te
nc

y
(s

)

#Records (x104)

POS-Tree
MBT

MPT
MVMB+-Tree

Figure 8: Diff performance

 0

 2

 4

 6

 8

 10

3 4 5 6 7 8

#R
ec

or
ds

 (
x1

03)

Tree Height

POS-Tree
MBT

MPT
MVMB+-Tree

Figure 9: Tree height

 0

 1

 2

 3

 4

 5

 6

 7

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

#R
ec

or
ds

 (
x1

03)

Latency (ms)

POS-Tree
MBT

MPT
MVMB+-Tree

(a) Read

 0

 1

 2

 3

 4

 5

 6

 7

 0.04 0.06 0.08 0.1 0.12 0.14 0.16

#R
ec

or
ds

 (
x1

03)

Latency (ms)

POS-Tree
MBT

MPT
MVMB+-Tree

(b) Write

Figure 10: Latency on YCSB

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5

#R
ec

or
ds

 (
x1

03)

Latency(ms)

POS-Tree
MBT

MPT
MVMB+-Tree

(a) Read

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10

#R
ec

or
ds

 (
x1

03)

Latency(ms)

POS-Tree
MBT

MPT
MVMB+-Tree

(b) Write

Figure 11: Latency on Ethereum transaction data

4.2 Throughput and Latency

4.2.1 Throughput.
First, we evaluate the throughput with the YCSB dataset.

We run read, write and mixed workloads with 50% write
operations under different data size and skewness settings
and the results are depicted in Figure 6(a). It can be observed
that the throughput of all indexes decreases as the number
of data grows and complies with the operation bound formu-
lated in Section 3.4.1. POS-Tree is 1.03x - 1.64x better than
the baseline in terms of throughput while MPT is only 0.82x
- 0.87x of the baseline. The throughput of MBT drops quickly
from 4.17x to 0.11x of the baseline due to the dominating
leaf loading and scanning process.

Figure 6(b) illustrates the throughput of read, write and
mixed workload with default dataset size of 640,000. It can
be seen that the throughput of all data structures decreases
drastically as the ratio of write operations increases. This is
natural since the cost of node creation, memory copy and
cryptographic function computation increases. The absolute
throughput drops over 6.6x for POS-Tree and the baseline
while the same measurement drops 30x for MBT and 7.3x
for MPT. Figure 6(c) shows the throughput under different
data skewness. We can observe that all the structures are
resistant to data skewness since there is a minor change in
the results for all index structures when 𝜃 changes from 0
to 0.9. We also evaluate similar measurements on the Wiki
dataset. The system first loads the entire dataset batched in

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

931

300 versions, and then executes the read andwrite workloads,
which are uniformly selected. Figure 7(a) demonstrates the
results, aligned with the metrics in the YCSB experiment.
For the experiments on Ethereum data, we simulate the

way blockchain stores the transactions. For each block, we
build an index on transaction hash for all transactions within
that block and store the root hash of the tree in a global linked
list. Versions are naturally created at a block granularity. For
write operations, the system appends the new block of trans-
actions to the global linked list while for lookup operations, it
scans the linked list for the block containing the transaction,
and traverses the index to obtain the value. Figure 7(b) shows
the result of this experiment. It can be observed that POS-
Tree outperforms other indexes in write workloads. This
is because we are building indexes for each block instead
of a global index. Further, instead of insert/update opera-
tions, we perform batch loading from scratch. In this case,
POS-Tree’s bottom-up building process is superior to the
MPT’s and MVMB+-Tree’s top-down building process, as it
only traverses the tree and creates each node once. Another
difference is that the throughput of read workload is lower
than that of the write workload mainly due to the additional
block scanning time.

4.2.2 Latency and Path Length.
For YCSB dataset, read-only and write-only workloads

are fed into the indexes with balanced (𝜃 = 0) and highly
skewed (𝜃 = 0.9) distributions. The dataset used in this test
contains 160,000 keys and We run 10,000 operations and
pictured the latency distribution in Figure 10. The x-axis
is the range of the latency and the y-axis is the number
of records fell in that latency range. It can be seen from
the figure that the rankings among the indexes coincide
with the previous conclusion – POS-Tree performs the best
for both read and write workloads while MPT performs the
worst. Meanwhile, MPT has several peak points, representing
operations accessing data stored in different levels of the tree.
To take a closer observation of how the workloads affect

the candidates, we further gather the traversed tree height of
each operation for the write-only workload with the uniform
distribution. The results are shown in Figure 9(a), where the
x-axis represents the height of the lookup path and the y-axis
indicates the number of operations. Most operations have
to visit 4-level nodes to reach the bottom-most level of POS-
Tree whilst 5- or 7-level nodes are frequently traversed for
MPT. The efficiency in MBT is also verified in the figure
since all requests only need 3 levels to reach the bottom of
the structure in both balanced and skewed scenarios.

The result for the skewed workloads in the YCSB dataset
is similar and hence omitted. The results for the Wiki dataset
is also skipped here for the same reason. For the complete
results, please refer to [25]. However, the experiment on

Ethereum transaction data exhibits different trends as de-
picted in Figure 11. As can be observed, all the structures
have similar read latency, caused by the dominant block
scanning process.
We also run a diff workload to evaluate the performance

of “diff” operations. In the experiment, each structure loads
two versions of data in random order. A diff operation is
performed between the two versions and the execution time
is taken, as depicted in Figure 8(a). All the candidates outper-
form the baseline due to the structurally invariant property.
Among which, MBT performs the best (4x of baseline) since
the position of the nodes containing a specific data is static
among all versions. The logic of diff operation is the simplest,
i.e., comparing the hash of the nodes at the corresponding
position. MPT performs 2x better than the baseline and 1.7x
better than POS-Tree due to the simplicity that keys with
the same length always lie in the same level of the tree.

4.3 Storage
In this section, we evaluate the space consumption of the

index structures under different use cases.

4.3.1 Single Group Data Access.
We first start with a simple case, where a dataset is ac-

cessed by multiple users. There is no sharing of data or cross-
department collaborative editing in this setting. Therefore,
the deduplication benefit is limited using SIRI . In reality, such
case often happens in-house within a single group of users
from the same department. Figure 12(a) shows the storage
under different data sizes for the YCSB dataset. There are two
main factors affecting the space efficiency, i.e., the size of the
node and the height of the tree. On the one hand, larger tree
height results in more node creations for write operations,
which also increases the space consumption. As an example,
MPT performs badly since it has the largest tree height in our
experiment setting. It consumes the storage up to 1.6x higher
than the baseline and up to 1.4x larger than POS-Tree. On the
other hand, a large node size means that even minor changes
to the node could trigger the creation of a new substantial
node, which hence leads to larger space consumption. As
can be seen, MBT performs the worst due to the largest node
size it has in the implementation. It consumes up to 6.4x
the space of that used by the baseline. POS-Tree, compared
to the baseline, also has a larger node size variance due to
content-defined chunking, leading to a greater number of
large nodes.
To better analyze how the memory space is used by dif-

ferent pages, we further accumulate the number of nodes
for all chosen indexes. The results are demonstrated in Fig-
ure 12(b) with variant dataset sizes. Typically, they follow
similar trends as Figure 12(a), except that MBT generates the

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

932

10-1

100

101

102

4 8 16 32 64

S
to

ra
ge

 U
sa

ge
 (

G
B

)

#Records (x104)

POS-Tree
MBT

MPT
MVMB+-Tree

(a) Storage

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 64

#N
od

es
 (

x1
05)

#Records (x104)

POS-Tree
MBT

MPT
MVMB+-Tree

(b) Number of nodes

Figure 12: Performance on single group data access

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 150 200 250 300

S
to

ra
ge

 U
sa

ge
 (

G
B

)

#Versions

POS-Tree
MBT

MPT
MVMB+-Tree

(a) Wiki

 0

 5

 10

 15

 20

 25

 30

 35

10 20 30

S
to

ra
ge

 U
sa

ge
 (

G
B

)

#Blocks (x104)

POS-Tree
MBT

MPT
MVMB+-Tree

(b) Ethereum

Figure 13: Storage on real world datasets

103

104

10 20 30 40 50 60 70 80 90 100

S
to

ra
ge

 U
sa

ge
 (

M
B

)

Overlap Ratio (%)

POS-Tree
MBT

MPT
MVMB+-Tree

(a) Storage

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60 70 80 90 100

#N
od

es
 (

x1
05)

Overlap Ratio (%)

POS-Tree
MBT

MPT
MVMB+-Tree

(b) Number of nodes

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 30 40 50 60 70 80 90 100
D

ed
up

lic
at

io
n

R
at

io
Overlap Ratio (%)

POS-Tree
MBT

MPT
MVMB+-Tree

(c) Deduplication ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

N
od

e
S

ha
rin

g
R

at
io

Overlap Ratio (%)

POS-Tree
MBT

MPT
MVMB+-Tree

(d) Node sharing ratio

Figure 14: Performance on diverse group collaboration

least number of nodes as the total number of nodes is fixed
for the structure.

The results for the Wiki dataset and Ethereum transaction
dataset are shown in Figure 13. Similar to the results of the
YCSB experiment, MBT and MPT consumed more space than
POS-Tree andMVMB+-Tree. A difference is that MPT storage
consumption increases very fast as the number of versions
are loaded in Figure 13(a). This is because the key length of
the Wiki dataset is much larger than that of YCSB, and the
encoding method used by Ethereum further doubles the key
length. For every insert/update operation, more nodes need
to be re-hashed and created. Hence, the space efficiency is
worse than it shows in the YCSB experiment.

4.3.2 Diverse Group Collaboration.
Next, we compare the storage consumption in the scenario

that diverse groups of users are collaborating to work on
the same dataset. This often occurs in the data cleansing
process and data analysis procedure, where different parties
work on different parts of the same dataset. One significant
phenomenon in this case is that duplicates can be frequently
found. Therefore, the deduplication advantages naturally in-
troduced by SIRI is critical to improving the space efficiency.
To better evaluate the deduplication capability, we define
another metric called node sharing ratio as formulated as
follows:

𝜂 (𝑆) = 1 − |𝑃1 ∪ 𝑃2 ∪ ... ∪ 𝑃𝑘 |
|𝑃1 | + |𝑃2 | + ... + |𝑃𝑘 |

,

where 𝑃𝑖 is the set of nodes of an instance i. While the dedu-
plication ratio evaluates the physical size of the storage saved,
the node sharing ratio indicates how many duplicate nodes
have been eliminated in the index.

The YCSB dataset is used in this experiment. We simulate
10 groups of users, each of which initializes the same dataset
of 40,000 records. We generate workloads of 160,000 records
with overlap ratios ranging from 10% to 100% and feed them
to the candidates. Here, 10% overlap ratio means 10% of
the records have the same key and value. The execution is
processed with default batch size, i.e., 4,000 records.
The results of the deduplication ratio and the node shar-

ing ratio are shown in Figure 14(c) and Figure 14(d), respec-
tively. Both metrics of all the structures become higher when
the workload overlap ratio increases since more duplicate
nodes can be found due to the increasing similarity among
the datasets. Benefiting from smaller node size and smaller
portion of updating nodes, MPT achieves the highest dedu-
plication ratio (up to 0.96) and node sharing ratio (up to 0.7).
POS-Tree achieves a slightly better deduplication ratio than
the baseline though they both have similar size of nodes and
the height of the tree. The actual ratios are 0.88 and 0.86, re-
spectively. However, POS-Tree achieves a much better node
sharing ratio compared to the baseline (0.48 vs. 0.27) because
of its content-addressable strategy when chunking the data.
By contrast, MBT’s fixed number of pages and growing leaf

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

933

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

D
ed

up
lic

at
io

n
R

at
io

Overlap Ratio (%)

Original
Non-structurally-invariant
Non-recursively-identical

(a) Deduplication ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10 20 30 40 50 60 70 80 90 100

N
od

e
S

ha
rin

g
R

at
io

Overlap Ratio (%)

Original
Non-structurally-invariant
Non-recursively-identical

(b) Node sharing ratio

Figure 15: Effect of SIRI property

nodes limit the number of duplicates, and therefore it does
not perform as good as the other two SIRI representatives.
To be more precise, we further collect the storage usage

and the number of pages created by the testing candidate
and illustrate the results in Figure 14(a) and Figure 14(b). The
trends in the figures match the corresponding deduplication
ratio and node sharing ratio perfectly. With the increasing
overlap ratio, storage reduction of POS-Tree and MPT is
more obvious than the baseline, among which POS-Tree is
the most space-efficient. MPT is most sensitive to overlap
ratio changes due to the high node sharing ratio introduced
by its structural design. Although it consumes more space
for non-overlapping datasets, MPT outperforms the baseline
for datasets with the overlap ratio above 90%.

4.4 Breakdown Analysis
In this section, we evaluate how each SIRI property affects

the deduplication performance. We select POS-Tree as the
testing object and disable the properties one by one. For each
property, we first explain how each property is disabled and
then provide the experimental results. We note that the Uni-
versally Reusable property is common for all immutable tree
indexes using copy-on-write approach. Thus, it is ignored in
this experiment.

• Disabling the Structurally Invariant Property.The
pattern based partitioning is the key to guarantee the
Structurally Invariant property. Therefore, we disable
the property by forcibly splitting the entries at half of
the maximum size when no pattern is found within the
maximum size. Consequently, the resulting structure
depends on the data insertion order. We increase the
probability of not finding the pattern by increasing the
bits of pattern and lowering the maximum value.

• Disabling theRecursively Identical Property.Orig-
inally, only the set of nodes lying in the path from the
root to the leaf node is copied and modified when an
update operation is performed, while the rest of the
nodes are shared between the two versions in POS-
Tree. We disable the Recursively Identical property by

forcibly copying all nodes in the tree. The number of
different pages between the two instances is much
larger than the number of intersections, which is zero.

The deduplication result is presented in Figure 15. We
can observe that both the deduplication ratio and the node
sharing ratio for POS-Tree is 0 with the Recursively Identi-
cal property disabled, since the structure does not allow the
sharing of nodes among different versions. Meanwhile, Fig-
ure 15(a) shows an up to 15% decrease in the deduplication
ratio when the Structurally Invariant property is disabled. It
is expected as the index performs the operations in different
orders, resulting in different nodes and smaller number of
share-able pages. Though the records stored are the same,
POS-Tree cannot reuse the nodes with the Structurally In-
variant property disabled. Similarly, Figure 15(b) shows that
the node sharing ratio decreases by up to 17%, i.e., from
0.53 to 0.36, by disabling the Structurally Invariant property.
Compared to the figures in previous sections, we can infer
how this property accelerates the deduplication ratio and
ultimately influences the final storage performance.
Overall, we can conclude that the Recursively Identical

property is the fundamental property to enable indexes with
deduplication and node sharing across different users and
datasets. On top of this, the Structurally Invariant property
further enhances the level of deduplication and node sharing
by making structures history-independent.

5 CONCLUSIONS
Tamper evidence and deduplication are two properties in-
creasingly demanded in emerging applications on immutable
data, such as digital banking, blockchain and collaborative
analytics. Recent works [6, 21, 22] have proposed three in-
dex structures equipped with these two properties. However,
there have been no systematic comparisons among them. To
address the problem, we conduct a comprehensive analysis
of all three indexes in terms of both theoretical bounds and
empirical performance. Our analysis provides insights re-
garding the pros and cons of each index, based on which we
conclude that POS-Tree is a favorable choice for indexing
immutable data.

This study is part of our ongoing work in building a ledger
database based on our Forkbase engine [21]. We envisage to
support data verifiability, immutability, and flexible transac-
tion models with high performance leveraging SIRI.

ACKNOWLEDGMENTS
This research is supported by Singapore Ministry of Educa-
tion Academic Research Fund Tier 3 under MOE’s official
grant number MOE2017-T3-1-007.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

934

REFERENCES
[1] 2006. GoogleDocs. https://www.docs.google.com
[2] 2011. LevelDB. https://github.com/google/leveldb
[3] 2012. RocksDB. http://rocksdb.org
[4] 2014. WeBank. https://www.webank.com/en/
[5] 2015. Ethereum. https://www.ethereum.org
[6] 2016. Hyperledger. https://www.hyperledger.org
[7] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan

Meng, Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A High
Concurrency Key-Value Store with Integrity. 251–266. https://doi.org/
10.1145/3035918.3064030

[8] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Desh-
pande, Aaron J. Elmore, Samuel Madden, and Aditya G. Parameswaran.
2014. DataHub: Collaborative Data Science & Dataset Version Man-
agement at Scale. CoRR abs/1409.0798 (2014). http://arxiv.org/abs/
1409.0798

[9] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin
Ooi, and Kian Lee Tan. 2017. BLOCKBENCH: A Framework for
Analyzing Private Blockchains. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data. 1085–1100. https:
//doi.org/10.1145/3035918.3064033

[10] Kave Eshghi and Hsiu Khuern Tang. 2005. A Framework for Analyzing
and Improving Content-Based Chunking Algorithms.

[11] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya
Parameswaran. 2017. OrpheusDB: Bolt-on Versioning for Relational
Databases. PVLDB 10, 10 (2017), 1130–1141. https://doi.org/10.14778/
3115404.3115417

[12] Qian Lin, Kaiyuan Yang, Tien Tuan Anh Dinh, Qingchao Cai, Gang
Chen, Beng Chin Ooi, Pingcheng Ruan, Sheng Wang, Zhongle Xie,
Meihui Zhang, et al. 2020. ForkBase: Immutable, Tamper-evident
Storage Substrate for Branchable Applications. In ICDE.

[13] Michael Maddox, David Goehring, Aaron J. Elmore, Samuel Madden,
Aditya G. Parameswaran, and Amol Deshpande. 2016. Decibel: The
Relational Dataset Branching System. PVLDB 9, 9 (2016), 624–635.
https://doi.org/10.14778/2947618.2947619

[14] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional
Encryption Function. In CRYPTO, Vol. 293. 369–378. https://doi.org/
10.1007/3-540-48184-2_32

[15] Microsoft. 2019. Azure Blockchain Service. https://azure.microsoft.
com/en-us/services/blockchain-service/

[16] Athicha Muthitacharoen, Benjie Chen, and David Mazières. 2001. A
Low-Bandwidth Network File System. In SOSP. 174–187. https://doi.
org/10.1145/502034.502052

[17] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-peer Electronic Cash
System. https://bitcoin.org/bitcoin.pdf.

[18] João Paulo and José Pereira. 2014. A survey and classification of
storage deduplication systems. Comput. Surveys 47, 1 (2014), 11. https:
//doi.org/10.1145/2611778

[19] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin,
Beng Chin Ooi, and Meihui Zhang. 2019. Fine-Grained, Secure and
Efficient Data Provenance on Blockchain Systems. PVLDB 12, 9 (2019),
975–988. https://doi.org/10.14778/3329772.3329775

[20] AmazonWeb Services. 2019. Amazon Quantum Ledger Database. https:
//aws.amazon.com/qldb/

[21] Sheng Wang, Tien Tuan Anh Dinh, Qian Lin, Zhongle Xie, Meihui
Zhang, Qingchao Cai, Gang Chen, Beng Chin Ooi, and Pingcheng
Ruan. 2018. Forkbase: An Efficient Storage Engine for Blockchain
and Forkable Applications. PVLDB 11, 10 (2018), 1137–1150. https:
//doi.org/10.14778/3231751.3231762

[22] Daniel Davis Wood. 2014. ETHEREUM: A SECURE DECENTRALISED
GENERALISED TRANSACTION LEDGER.

[23] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. 2016. A comprehensive
study of the past, present, and future of data deduplication. Proc. IEEE
104, 9 (2016), 1681–1710. https://doi.org/10.1109/JPROC.2016.2571298

[24] Zhongle Xie, Qingchao Cai, Gang Chen, Rui Mao, and Meihui Zhang.
2018. A Comprehensive Performance Evaluation of Modern In-
Memory Indices. In ICDE. 641–652. https://doi.org/10.1109/ICDE.
2018.00064

[25] Cong Yue, Zhongle Xie, Meihui Zhang, Gang Chen, Beng Chin Ooi,
Sheng Wang, and Xiaokui Xiao. 2020. Analysis of Indexing Structures
for Immutable Data. arXiv:cs.DB/2003.02090

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

935

https://www.docs.google.com
https://github.com/google/leveldb
http://rocksdb.org
https://www.webank.com/en/
https://www.ethereum.org
https://www.hyperledger.org
https://doi.org/10.1145/3035918.3064030
https://doi.org/10.1145/3035918.3064030
http://arxiv.org/abs/1409.0798
http://arxiv.org/abs/1409.0798
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.14778/3115404.3115417
https://doi.org/10.14778/3115404.3115417
https://doi.org/10.14778/2947618.2947619
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://azure.microsoft.com/en-us/services/blockchain-service/
https://azure.microsoft.com/en-us/services/blockchain-service/
https://doi.org/10.1145/502034.502052
https://doi.org/10.1145/502034.502052
https://doi.org/10.1145/2611778
https://doi.org/10.1145/2611778
https://doi.org/10.14778/3329772.3329775
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://doi.org/10.14778/3231751.3231762
https://doi.org/10.14778/3231751.3231762
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1109/ICDE.2018.00064
https://doi.org/10.1109/ICDE.2018.00064
http://arxiv.org/abs/cs.DB/2003.02090

	Abstract
	1 Introduction
	2 Related Work
	2.1 Immutability and Tamper Evidence
	2.2 Data-Level Deduplication

	3 Structurally Invariant and Reusable Indexes
	3.1 Background and Notations
	3.2 Formal Definition
	3.3 SIRI Representatives
	3.4 Theoretical Comparison

	4 Experimental Benchmarking
	4.1 Dataset and Implementation
	4.2 Throughput and Latency
	4.3 Storage
	4.4 Breakdown Analysis

	5 Conclusions
	Acknowledgments
	References

