
Freenet Institut
für

Informatik

O P T I M I Z I N G A D I S T R I B U T E D S PA M
F I LT E R F O R F R E E N E T

A K A

T H E W E B O F T R U S T D E V E L O P E R ’ S M A N U A L

Bachelor’s thesis

to obtain the academic degree Bachelor of Science submitted
to the Faculty Physics, Mathematics and Computer Science

of the Johannes Gutenberg-University Mainz

on 2015-09-01 by

xor@freenetproject.org

Version: 1.2-pdf

Submission date: 2015-09-01

First reviewer: Univ.-Prof. Dr.-Ing. André Brinkmann
Head of the Center for Data Processing
and of the Efficient Computing and Storage Group

Second reviewer: Univ.-Prof. Dr. Ernst Althaus
Head of Algorithmics

A B S T R A C T

The Freenet Project [1] aims to provide the decentralized, anonymous storage net-
work “Freenet” which is resistant against censorship. It is built on top of the regular
Internet, and serves as a foundation for anonymous implementations of a multi-
tude of common web services such as mail, forums and social networking [2]. Due
to the fact that potential attackers are also anonymous in Freenet, spam and Denial
of Service (DoS) cannot be blocked with conventional measures such as IP black-
lists. Thus, a system for creating user identities using cryptography had been im-
plemented. It is called “Web of Trust”(WOT or WoT) [3] and allows prevention of
spam by a mechanism where users vote upon how much other users can be trusted
to not publish spam.
Due to the growing amount of users and poor choice of algorithms in the initial
implementation, the performance of certain functions of WoT has deteriorated to
the point where they can block the user interface (UI) for time spans close to a
minute (page 49, [4]). These functions are vital for the daily use of WoT, and thereby
such delays are not acceptable. The subject of this thesis shall be to improve their
performance by replacing the affected algorithms with different ones.

G E R M A N A B S T R A C T

Das Freenet Projekt [1] hat die Zielsetzung, das dezentrale, anonyme Speichernetz
“Freenet” zur Verfügung zu stellen, welches zensurresistent ist. Es baut auf dem
regulären Internet auf, und dient als Fundament für anonyme Implementierungen
einer Vielfalt an bekannten Web-Diensten wie Mail, Foren und sozialer Netzwerke
[2]. Aufgrund der Tatsache, dass potentielle Angreifer in Freenet auch anonym
sind, sind Spam und Denial of Service (DoS) mit konventionellen Maßnahmen wie
IP-Sperren nicht zu verhindern. Daher wurde einen System zur Erzeugung von
Nutzer-Identitäten mittels Kryptographie implementiert. Es heißt “Web of Trust”
(WOT oder WoT) [3] und erlaubt das Verhindern von Spam mittels eines Mechanis-
mus bei dem Nutzer eine Wahl durchführen, in der die Stimmen darüber entschei-
den, ob andere Nutzern vertraut werden kann keinen Spam zu veröffentlichen.
Aufgrund der wachsenden Anzahl an Nutzern und schlechter Wahl der Algorith-
men in der ursprünglichen Implementierung ist die Performanz bestimmter Funk-
tionen von WoT derart gesunken, dass diese das User-Interface für Zeiträume nah
an einer Minute blockieren können (Seite 49, [4]). Diese Funktionen sind für die
tägliche Nutzung von WoT zwingend notwendig, daher sind solche Wartezeiten
nicht akzeptabel. Das Thema dieser Bachelorarbeit soll sein, deren Performanz zu
verbessern, indem die betroffenen Algorithmen mit anderen ersetzt werden.

III

A C K N O W L E D G E M E N T S

Sincerest and utmost gratitude shall be expressed to all volunteer developers who
have kept the spirit of the Freenet Project alive for 16 years [5] as of Summer 2015.

Equally important are the donors who have helped Freenet core development
to have a stable source of development effort for well over 10 years, as well as
Matthew Toseland for using these funds to not only dedicate his workforce but
also his personal passion to Freenet for this long time [6].

The same importance can also be testified to the ~10 000 users who donate their
bandwidth and disk storage of ~140 TB to Freenet [7].

Last but not least, the list of acknowledgments shall be closed with my personal
thanks to the staff of the University of Mainz for enduring my slightly stubborn
but hopefully bearable continuous ramblings about the aesthetics of the technology
behind Freenet. I hope this can be forgiven when considering how captivating the
idea behind it can be: A technology such as Freenet may someday return the Inter-
net back to the level of freedom of knowledge which it once seemed so promising
to provide, but was deprived of by greed and enforcement of political ideologies.

IV

C O N T E N T S

1 I N T R O D U C T I O N 1
1.1 What is Freenet? . 1

1.1.1 Freenet’s primary goal: Prevention of censorship 1
1.1.2 Self-adjusting redundancy . 2
1.1.3 Address and data types in Freenet 4
1.1.4 Freenet in numbers . 4

1.2 What is Web of Trust? . 5
1.2.1 The spam problem in anonymous networks 5
1.2.2 Web of Trust as a distributed, collaborative spam filter 6

1.3 The aim of this thesis . 6

2 T H E O R E T I C A L B A C K G R O U N D 7
2.1 The data model of Web of Trust . 7
2.2 The Score computation algorithm . 11

2.2.1 Reference implementation: Full recomputation from scratch . 11
2.2.2 Incremental Score computation upon Trust change 18

3 R E S U LT S A N D D I S C U S S I O N 23
3.1 Presuppositions of the optimized incremental Score computation . . 23
3.2 The optimized incremental Score computation algorithm 25

3.2.1 Updating Score ranks . 27
3.2.2 Updating Score capacities . 30
3.2.3 Updating Score values . 31
3.2.4 Choice and optimization of SPSP algorithm to fit structural

properties of WoT graph . 33
3.2.5 Synopsis of new incremental Score computation 40

3.3 Benchmark . 42
3.3.1 Choice of benchmark . 42
3.3.2 Benchmark results . 49

4 C O N C L U S I O N A N D O U T L O O K 51
4.1 Analysis of benchmark results . 51

4.1.1 Deficiencies of the new algorithm 51
4.1.2 Probability of occurrence of deficiencies 52

4.2 Conclusion . 53
4.3 Ideas for future work . 54

4.3.1 Opportunistic rank computation 54
4.3.2 Backtracking . 54
4.3.3 Divide and conquer . 55

V

4.3.4 New class of shortest path algorithms? 55
4.3.5 Different Score computation algorithm 56

4.4 Related works . 57
4.4.1 Freenet Message System (FMS) 57
4.4.2 Less Crappy Web of Trust (LCWoT) 58
4.4.3 OpenBazaar Web of Trust proposal 59
4.4.4 Further related works . 61

A B O N U S W O R K 63
A.1 Identity file queuing . 63
A.2 Correctness test of new Score computation 64

A.2.1 Correctness test using Identity file queue 64
A.2.2 Unit tests . 64

A.3 Pseudocode . 65
A.4 Event propagation . 65

B O B TA I N I N G T H E T H E S I S ’ S O U R C E C O D E 67

C S TAT I S T I C S A B O U T T H E T H E S I S ’ S O U R C E C O D E 69

D C O P Y R I G H T S 71

B I B L I O G R A P H Y 73

L I S T O F F I G U R E S

Figure 2.1 Capacity value decay with growing rank 16

Figure 3.1 Benchmark results of optimizations 50

L I S T O F P S E U D O C O D E

Listing 1 Core classes of Web of Trust 8
Listing 2 Rank computation reference implementation 13
Listing 3 Capacity computation reference implementation 15
Listing 4 Score value computation reference implementation 17
Listing 5 Old incremental Score computation implementation 19

Listing 6 Abort conditions of old incremental Score computation . . . 23
Listing 7 Refactored old incremental Score computation to call new

algorithm . 24
Listing 8 New optimized incremental Score computation algorithm core 25

VI

Listing 9 New optimized incremental Score computation algorithm:
updateRanksAfterDistrust...() 27

Listing 10 New optimized incremental Score computation algorithm:
updateCapacitiesAfterDistrust...() 30

Listing 11 New optimized incremental Score computation algorithm:
updateValuesAfterDistrust...() 31

Listing 12 New optimized incremental Score computation algorithm:
computeRankFromScratch() initial version 33

Listing 13 New optimized incremental Score computation algorithm:
computeRankFromScratch() optimized version 37

Listing 14 Benchmark to compare old and new algorithm 49

L I S T O F A B B R E V I AT I O N S

API Application Programming Interface

BFS Breadth-First Search algorithm [8]

CAPTCHA Completely Automated Public Turing test

to tell Computers and Humans Apart [9]

cRFS computeRankFromScratch(), see page 33

DoS Denial of Service. Also referred to as “spam”.

ID IDentifier

SPSP Single-Pair Shortest-Path problem [10]

SSSP Single-Source Shortest-Paths problem [11]

UI User Interface

UCS Uniform-Cost Search algorithm [12] [13]

USK Updateable Subspace Key [14]

WoT Web of Trust

WOT same as WoT

XML eXtensible Markup Language [15]

VII

1 Introduction

This thesis aims to be self-contained: No prior knowledge about Freenet or Web of
Trust shall be required.
Hence, it is recommended to read the following introduction to get a sufficient
overview of what Freenet and Web of Trust are.

1.1 What is Freenet?

Freenet [1] is an anonymous peer-to-peer network which operates on top of the
regular Internet.
Unlike the currently more widely known Tor [16] [17], the goal of Freenet is not to
allow anonymous access to regular websites. Instead, it aims to be a self-contained
storage network which hosts content of its own. Each user donates part of their disk
space, and Freenet uses it to store content of remote users. The content is stored in
an encrypted fashion, and the decryption key is not available to the users who store
the content.
As users cannot even look into whats in their database, they are believed to not
be legally liable for what they store. Like a bank, they provide the service of “safe
deposit boxes”, and should not be held accountable for what is in them.
Only the person who uploaded a certain piece of content has got the decryption key,
and may share this “address” with other people, just like a regular web address, so
they may retrieve and decrypt the content.
The motivation behind providing storage instead of merely anonymizing access to
regular websites can be understood from the primary goal of Freenet which we will
now get to know.

1.1.1 Freenet’s primary goal: Prevention of censorship

The legacy architecture of regular websites includes a single point of failure: The
server at which a website is stored is a central instance which can be disabled.
With the Domain Name System (DNS), which provides user-friendly names such
as “www.freenetproject.org”, the registry which controls the assignment of those
names even knows the physical owner of the server.
When thinking about services such as Tor which anonymize access to such regular
websites, it becomes apparent that this strategy is not robust against censorship as
de-anonymization is not the attack vector for censorship there:
A fascist government may of course have an interest in conducting censorship by
de-anonymizing Tor users: By putting them in prison then, they are prevented from
consuming certain information. But it may even have a bigger interest in just delet-
ing the whole sites. If the content is gone, even users of Tor cannot access it. And
disabling a single website is much less work than tracking down potentially thou-

1

2 I N T R O D U C T I O N

sands of users of it. Censorship is thus very easy as only the server or even its owner
needs to be attacked.
Because of this, Tor does provide the concept of “hidden services” to anonymize
the exit point at which a website is hosted. For ease of understanding, this can be
summed up as a special “.onion” domain name, where the target Internet address
is hidden by Tor.
Unfortunately, this is still a single point of failure: A hidden service is typically
controlled by a single person, and resolves to a single target server. As a single
person can only provide a limited amount of efforts to host a server 1 , an attacker
may just conduct a Denial of Service (DoS) attack to take it down.
And even if no attack is conducted, it might be unwise to store certain content on a
central server which may go away if one person shuts off the server: Content which
for example reveals major political scandals should probably not only be stored in
one place. It is just too important for society to risk its loss, a decentralized storage
system should be preferred.
As anonymous networks are a very important retreat for publishing such valuable
data, with Freenet it was decided to try to avoid this problem at the network layer
already: Instead of storing the data of a Freenet website on the machine of the pub-
lisher, it is stored across the whole network on the machines of other users. Once
the upload of a site is completed, the publisher may turn off his computer forever.

1.1.2 Self-adjusting redundancy

As we have just learned, Freenet users provide storage for each others. As avail-
ability is dependent on remote users now, this raises the questions of when data is
deleted:
What happens if users upload more content than there is disk space available?
What happens if a user deletes their store by uninstalling Freenet?
Freenet solves this problem in a quite satisfactory way:
If a user requests the download of data, instead of transferring it directly from the
storing peer to the requester, the data is always transported across many peers.
While this is already necessary for the reason of providing anonymity, it hereby
serves another purpose: The peers along the route will put the data into their cache.
Upon low space, a pre-existing slot in the cache will be replaced at random choice
to fulfill this operation.
The resulting effect is that popular data, i.e. such which is downloaded frequently,
gets stored on more computers. Unpopular data eventually gets deleted due to
random replacement 2.
The result is that Freenet is a self-organizing system. There is no librarian or any
other central authority which may decide to delete data. Even the author of data

1 Outsourcing hosting to a data center which could provide load balancing would be a bad idea: The
administrators might de-anonymize the owner.

2 We may now realize that Freenet is in fact what is commonly referred as a “distributed hash table”
(DHT).

1.1 W H AT I S F R E E N E T ? 3

cannot delete it once uploaded! Availability of data is solely controlled by the bal-
ance between offer of disk-space and the demand of people who download it.
This lack of human control can be hoped to provide freedom of information, speech
and knowledge in the most fair way possible.

4 I N T R O D U C T I O N

1.1.3 Address and data types in Freenet

For the purpose of this thesis, we shall only need knowledge of one of the four
address types in Freenet: The “Updateable Subspace Key” (USK) [14].
USKs allow an author to upload arbitrary file and directory structures. In turn, the
author can provide an address of a file like:

USK@freenet-address/site-name/edition/directories.../file

The author may use USKs to publish whole file and directory structures. No restric-
tion is put upon the content type of files, and their size is practically unlimited3.
It is possible to update these structures by publishing a new “edition”, which is
merely an integer counting up from zero.
Control of updating an USK is restricted using asymmetric cryptography. Only the
holder of the secret key, typically the author, may update it.
When a remote user accesses the USK, Freenet will validate the authenticity of the
retrieved data: The “freenet-address” contains a reference to the public key of the
author. The public key will be retrieved and used to validate the cryptographic
signature of the data.
The basic use case of an USK are “Freesites”: They use the same file formats as
regular websites, and are also viewed using a browser - but are accessed through
the Freenet web interface which acts as a gateway.
Freenet “client applications”, such as Web of Trust which will be our subject, may:

• “subscribe” to an USK: Freenet will periodically query the network for new
editions, and automatically ship them to the client application.

• publish USKs on their own, to use Freenet as the network layer for building
their own advanced peer-to-peer systems on top of it.

1.1.4 Freenet in numbers

• ~16 years of development [5] as of 2015.

• ~350 000 lines of code [18] - including only some of the sub-projects [2] it
consists of.

• ~10 000 users [7].

• ~140 TB of donated disk space [7].

• ~2 months of donation money left as funding for employees [19].

3 There is most likely a limit due to finite length integer arithmetic. Also, the availability of larger files
depends more on the total disk space of the network.

1.2 W H AT I S W E B O F T R U S T ? 5

1.2 What is Web of Trust?

1.2.1 The spam problem in anonymous networks

The flexibility which USKs offer allows the imagination of a plethora of isomor-
phisms which can be used to implement regular web services on top of Freenet.
There are implementations of all kinds of popular communication systems ranging
from individual messaging to global communication [2]:

• Mail

• Social networking

• Blogging

• Micro-blogging (= what “Twitter” provides)

• Forums

• Websites

• Wikis

• Search engines

All these communication systems involve “one-to-many” communication, and so
share a common attribute:
One user should be able to send content to many users without the remote users
requesting it first. Nobody would use mail if it required frequent use of a manual
command “download the mails I have received from my friend X” for every com-
munication partner X. Instead, content of remote users should be retrieved without
user interaction.
This automatic retrieval of content can be a problem in the context of how Freenet
works:
An entity which wants to censor content cannot delete the content as Freenet does
not allow deletion. It also cannot persecute users in the real world as they are anony-
mous. Thus, the primary remaining tool of censorship is the “Denial of Service”
attack (DoS or spam): By polluting communication systems with useless data, they
become unusable. The content to be censored will drown in the flood of “spam”.
This attack is aggravated the fact that everyone in Freenet is anonymous: The at-
tackers are also anonymous! They cannot be blocked by regular countermeasures
such as blacklists of Internet addresses.
A further exacerbation is the scarcity of bandwidth in peer-to-peer networks: As
they are powered by their users, not by large data centers, traffic is very expensive.
This is even more the case in an anonymous peer-to-peer network: Anonymization
usually works by redirecting traffic over many peers, and thus the available band-
width will be reduced to the slowest link in the chain.
Consequently, there are two desirable features of spam prevention in Freenet:

6 I N T R O D U C T I O N

• Due to the high probability of censors resorting to DoS / spam, spam preven-
tion should be a library which can be used by all kinds of communication
systems.

• Because of the high cost of network traffic, spam must not only be filtered out
locally after it was downloaded. A spam filter must instead be proactive: Spam
must not even be downloaded in the first place.

1.2.2 Web of Trust as a distributed, collaborative spam filter

The aforementioned requirements are the job of Web of Trust (WoT). It allows
each user to create anonymous “Identities”. They can be considered as a public
pseudonym which serves as a “user account” to the communication systems built
on top of WoT.
The social community of Identities can rate each others like in an election. The result
of this poll decides whether a user is considered as trustworthy or as a “spammer”.
The Freenet client applications such as forums then become client applications of
WoT: They will query WoT for a list of trustworthy Identities, and only download
content from those. Identities which WoT deems to be spammers will be ignored.

1.3 The aim of this thesis

While WoT seems to do its job of filtering spam, it is yet still a historically grown
mixture of work from mostly various volunteers. The principle of choosing and
evaluating the used algorithms in a scientific fashion may have been ignored some-
times.
As a result, WoT is often perceived to be a really slow application in terms of exces-
sive CPU usage and excessive execution times of basic operations such as removing
ratings. Reports of the users and measurements show that core operations such as
changing a vote upon another user can cause execution times in the order of mag-
nitude of almost a minute (page 50).
The goal of this thesis shall therefore be to optimize performance by replacing the
affected algorithms.
Albeit the thesis document will mostly focus on the algorithmic theory, a full Java
implementation of the changes is also provided (page 67). It has been thoroughly
tested, merged into the main Git tree of WoT [20–25], and will be included in the
next WoT beta release.

2 Theoretical Background

To only require common computer science knowledge for understanding this thesis,
this chapter will describe how Web of Trust worked before the thesis. It will do
so in a way which requires no prior knowledge or further reading about Freenet
or WoT technology whatsoever. Having read the previous introduction chapter is
recommended though.
Where no further sources are cited, all knowledge in this section is obtained from
studying the Freenet [26] and WoT source code [27].
Mathematical proofs of observations about the preexisting state of the WoT code-
base will be avoided: It is beyond the time quota of this thesis to test the correctness
of the existing code. It shall be taken for granted. 1

2.1 The data model of Web of Trust

The central features of Web of Trust can be understood just by looking at 4 of its
core Java classes.
Their roles shall now be elaborated by simplified Java pseudocode which represents
the most important data they store and provide. “Simplified” hereby means that
names of those four classes are kept as is, but names of member functions, member
variables and class types of member variables are chosen differently to be more
self-explanatory for people unfamiliar with the WoT codebase.

1 Correctness of new code written as part of this thesis will nevertheless still be possible to be tested:
Unit tests will be used to compare the results of the old and new implementations.

7

8 T H E O R E T I C A L B A C K G R O U N D

Listing 1: Core classes of Web of Trust (simplified) [28]
1 c l a s s Identity {
2 FreenetDownloadAddress publicDownloadAddress ;
3 String nickname ;
4
5 String getID () {
6 re turn publicDownloadAddress . getHashOfPublicKey () ;
7 }
8
9 i n t getEdition () {

10 re turn publicDownloadAddress . getEdition () ;
11 }
12 }
13
14 c l a s s OwnIdentity extends Identity {
15 FreenetUploadAddress secretUploadAddress ;
16 }
17
18 c l a s s Trust {
19 Identity truster ;
20 Identity trustee ;
21 byte value ; // Range : [−100 , +100]
22 }
23
24 c l a s s Score {
25 OwnIdentity truster ;
26 Identity trustee ;
27 i n t rank ; // Range : [0 , ∞]
28 i n t capacity ; // Range : [0 , 100] (= percentage)
29 i n t value ; // Range : [−∞ , +∞]
30 }

C L A S S I D E N T I T Y (line 1) This class represents a remote user of WoT. The public-
DownloadAddress is the Freenet “Updateable Subspace Key” (USK) [14] at which the
Identity is published as XML [15] and can be downloaded from. The XML which
contains an Identity will also further be referred to as “Identity file”. A Freenet
USK is an address which is defined by a cryptographic public/private key pair. The
owner of the private key, which is also the owner of the Identity, is the only person
who can publish at the USK. Any data uploaded to the USK will be signed with the
private key by the owner. By knowing the USK publicDownloadAddress, not only can
WoT download a remote Identity - it can also validate that the downloaded version
was uploaded by the owner, not by an attacker: The USK contains the hash of the
public key, and thus allows Freenet to download the public key and validate the
signature of downloaded identity files. This is done automatically by Freenet - it is
not possible for a tampered version of an identity to be downloaded from its USK.
Freenet will discard data which does not contain a valid cryptographic signature
before even delivering it to WoT.
An Identity is uniquely described by its identifier (ID) which is the aforementioned
hash of the public key of the USK. Due to the sufficiently high entropy in the way
such public keys and therefore hashes are generated, it can be assumed that the

2.1 T H E D ATA M O D E L O F W E B O F T R U S T 9

probability of two independent Identities holding the same ID is infinitesimally
small. Thus, there can only ever be one Identity globally with a given ID.
The Identity file is published in editions (also described as “versions”). The edition is
an integer which counts up from 0 inclusive. Each edition is a fully self-contained
copy of an Identity, and replaces lower editions. By downloading only the latest
edition, WoT has all current data of the Identity. One of the main jobs of WoT is
to monitor the network for new editions of identities, and download them. It is
also responsible for discovering identities by checking downloaded identity files
for links to USKs of yet unknown identities. Thus, the peer-to-peer network layer
of WoT is equal to the identity files2.
Besides the nickname and various preferences of an Identity, an Identity file usually
contains a so called trust list. A trust list is a set of objects of class Trust, which we
will also discuss soon.

C L A S S O W N I D E N T I T Y (line 14) Similar to class Identity, this represents a user
of WoT. But instead of a remote user, an OwnIdentity represents a local user.
The existence of multiple OwnIdentity objects does not mean that there are multiple
physical users at the machine. It is neither encouraged nor technically supported to
allow multiple users to use a single WoT installation3.
Instead, single users are encouraged to use multiple OwnIdentities as a measure
to improve their anonymity: By restricting each type of activity such as posts in
different forums to a single OwnIdentity, the user can limit the amount of correlated
information which is available about him.
For our purposes, the quintessence of OwnIdentities is: We will understand them
as “a local user of WoT”. We will assume their amount to be small.

C L A S S T R U S T (line 18) Objects of class Trust, also named Trust values in refer-
ence to their most important member variable, are the main ’input’ of the user to
the computations of WoT. By storing a Trust object, an Identity referred as truster
assigns a rating in the range [-100, +100] to another Identity, called the trustee. The
truster may also be considered as the Trust’s “giver” or “source”, and the trustee as
the “receiver” or “target”. Positive values, including zero, are interpreted as “trust-
worthy”, negative values are interpreted as “not trustworthy” (or “distrusted”).
For a given pair of (truster, trustee), there can only be a single Trust - just like in a real
election, multiple votes upon the same candidate are not allowed4. It is however
allowed to cast multiple votes by giving multiple Trust values to different trustees.

2 Identities also publish so called “introduction puzzles” which are are separate network layer. They
are what is commonly known as CAPTCHAs (“Completely Automated Public Turing test to tell Com-
puters and Humans Apart”) [9] and prevent attackers from creating an infinite amount of identities
to forge Trust votes. The introduction puzzles are not relevant to this thesis though.

3 This is due to a lack of a password mechanism for example. It might be implemented in the future to
support public Freenet gateways.

4 The purpose of the CAPTCHA mechanism which was mentioned in a previous footnote now be-
comes apparent: It attaches a cost to the creation of an Identity to prevent users from creating multiple
Identities for the purpose of being able to cast multiple votes upon a single trustee.

10 T H E O R E T I C A L B A C K G R O U N D

By convention and encouragement via UI design, users are instructed to use nega-
tive ratings only in the case where the rated Identity publishes spam or does a DoS
attack. Or said inversely, the purpose of the Trust mechanism is not to punish other
users for having a different opinion.
WoT will accumulate the Trust values of all Identities eligible for voting by down-
loading their Identity files and importing the contained trust lists. Whether an Iden-
tity is eligible for casting a vote is determined by its capacity, which the following
paragraph about class Score will introduce.

C L A S S S C O R E (line 24) The Score objects, also named Score values in reference
to their most important member variable, are the main ’output’ of WoT’s computa-
tions. They are not created manually by the user: The Score computation algorithm,
which will be discussed in the following section, produces Score objects from all
known and eligible Trust objects.
The Score objects are what is delivered to the actual “client applications” built on
top of WoT, for example forum systems. The client apps use the Scores to decide
whether content shall be downloaded from an Identity; or whether the Identity is
considered as a spammer and thus its content must not be retrieved.
A Score’s value indicates whether a WoT client application should consider the Iden-
tity trustee as trustworthy or distrusted from the perspective of the OwnIdentity
truster. The truster may also be considered as the Score’s “giver” or “source”, and
the trustee as the “receiver” or “target”. If a Score value is positive, including zero,
content - in our example forum posts - should be downloaded from the Identity
trustee and displayed in the UI of the OwnIdentity truster. If it is negative, or5

if there is no Score object for the given Identity, the Identity is considered as dis-
trusted and its content should not be downloaded. It is noteworthy that WoT will
not only use the “should this Identity be downloaded?” output of its computations
to service client apps, but also for its own purposes: It will not download Identity
files from Identities with a bad Score, to prevent Denial of Service / spam upon
WoT itself 6.
For every OwnIdentity, WoT will try to compute a Score for all other Identities to
rate them from the perspective of the given OwnIdentity. Notably, if an OwnIden-
tity has assigned a Trust value to another Identity, the Trust value will always over-
write the other Identity’s Score value, which would normally instead be computed
from remote Trust objects. By observing this fact, we can learn that Score values

5 If WoT does not create a Score object for a certain Identity, this must still be interpreted as the Identity
being distrusted: There are so few Trust objects reaching the Identity that it is not possible to assign
a rating to it. Thus, for security reasons, in this situation of doubt, the safer approach of considering
the Identity as not trustworthy is chosen.

6 Identities may be downloaded upon a special condition even if they have a negative Score value:
If they are eligible for casting Trust votes, which they are when their Score capacity is above 0. This
is to ensure stable behavior of the algorithm in spite of random permutations of the order in which
Identities are downloaded: Changes in the order of download of Identities, which can at any time
happen due to the random nature of networking, should not change the output Score values of the
algorithm.

2.2 T H E S C O R E C O M P U TAT I O N A L G O R I T H M 11

could also be called “computed Trusts”: Where the user himself was not able de-
cide himself how high the Trust value for an Identity should be, WoT jumps in and
does the job of inferring the trustworthiness by computing a Score value from other
users’ Trust values.
The Score value then is computed as a weighted average of the Trust values of the
other users.
The weight of each Trust included in a Score is decided from the capacity field of
another Score: The Score of the Identity which gave the Trust. For example when
computing a Score given by OwnIdentity O to Identity A, and considering a Trust
T from Identity B to Identity A, then the Trust’s value is weighted by the Score
capacity of the Score given from O to B. The capacity serves as a percentage which
weights the Trust value.
The capacity itself is computed from the rank. The rank of an Identity who received
the Score is a measurement of the “distance” to the OwnIdentity who is assign-
ing the Score. The distance is measured by a function of Trust steps, with some
limitations which will be discussed further. For now, an example can be given as:
OwnIdentity O trusts Identity A trusts Identity B -> rank = 2.
The computation and meaning of rank and capacity shall become more apparent
when we now proceed to discuss the Score computation algorithm.

2.2 The Score computation algorithm

Before this thesis was written, there were two Score computation algorithms
present in WoT:

1. The reference implementation computeAllScoresWithoutCommit() which recom-
putes all Scores from scratch, i.e. works upon an empty Score database, just
by considering the Trust objects.

2. An optimized incremental Score computation algorithm which is able to only
update those Scores which need to be updated after a single Trust object
changed.

We will now consider those existing implementations to eventually learn about
their insufficiencies.

2.2.1 Reference implementation: Full recomputation from scratch

The function computeAllScoresWithoutCommit() 7 [29] is sufficiently self-contained
to allow full understanding of how Scores are computed, and is able to recompute
all Score objects from Trust objects, not relying upon pre-existence of any Scores 8.

7 Notice: The “withoutCommit” part of the function name only refers to the fact that the function does
not commit the database transaction, it is not of interest to us.

8 To be factually correct, it shall be noted that actually the function does need a certain type of special
Score objects to pre-exist: For each OwnIdentity, a Score assigned from the OwnIdentity to itself must

12 T H E O R E T I C A L B A C K G R O U N D

Thereby, the JavaDoc labels it as the reference implementation of Score computa-
tion, and thus it is critically important for this thesis to understand how this algo-
rithm works.
Hence, the function shall now be summarized by Java pseudo-code which shows
its core computations while ignoring handling of errors, boundary conditions, etc.
It is split into three stages, which we will attempt to understand now:

1. Computing ranks

2. Computing capacities

3. Computing Score values

2.2.1.1 Computing ranks

For understanding rank computation, let us consider the following isomorphism:
Where I is the set of all Identity objects, and T is the set of all Trust object, we
consider them as:

Graph G = (V = I,E = T)

Thus, where the Identities are the vertices, giving a Trust from an Identity A to an
Identity B yields a directed edge A -> B, with the Trust value as the weight of the
edge. We will call this the Trust graph from now on.
Notice: What is considered as the weight of a Trust edge will often be different in
the following elaborations. But usually it will still be a function of the Trust value.
The goal of the rank computation stage is to compute shortest paths upon this
graph in a special manner. The shortest paths are what will be called “rank”. Let us
now have a look at how those shortest paths are computed, in a Java pseudocode
which was simplified for ease of understanding 9 :

exist. The Score will have special constant values of value, rank and capacity. This seems to be a trick to
make the algorithm yield the same results with empty databases as the incremental implementation:
If incremental computation is compared to the mathematical method of induction, then the self-Score
is the base-case to get it started. It was not investigated in detail why full Score computation does not
automatically create those objects if they do not exist, but it can be speculated that this is only needed
in a unit test situation: In normal operation, createOwnIdentity() will always create such a Score object,
and it will persist forever. Thus, we can ignore this special “self-Score” for now.

9 Parts of the pseudocode are more inefficient compared to the actual implementation. This was solely
done for readability. It will not cause any issues when comparing performance as we will do that by
benchmarks of the original code, not using the pseudocode here.

2.2 T H E S C O R E C O M P U TAT I O N A L G O R I T H M 13

Listing 2: Rank computation reference implementation (simplified) [30]
1 f o r (OwnIdentity source : getAllOwnIdentities ()) {
2 Map<Identity , Integer> ranks = new HashMap < >() ;
3 Queue<Identity> unprocessedVertices = new LinkedList < >() ;
4
5 ranks . put (source , 0)
6 unprocessedVertices . addLast (source) ;
7
8 while (unprocessedVertices . isEmpty () == f a l s e) {
9 Identity vertex = unprocessedVertices . removeFirst () ;

10 Integer vertexRank = ranks . get (vertex) ;
11
12 i f (vertexRank == ∞) {
13 // I f an I d e n t i t y has a rank of ∞ i t i s not allowed to give a rank
14 // to i t s t r u s t e e s .
15 // Notice : The Map i s i n i t i a l i z e d to " n u l l " ranks , not ∞
16 continue ;
17 }
18
19 f o r (Trust edge : getGivenTrusts (vertex)) {
20 i n t weight ;
21
22 i f (edge . value > 0)
23 weight = 1 ;
24 e l s e
25 weight = ∞ ;
26
27 Identity neighbourVertex = edge . getTrustee ()
28 i n t neighbourRank = vertexRank + weight ;
29 Integer neighbourRankOld = ranks . get (neighbourVertex) ;
30 boolean neighbourSeen = ranks . get (neighbourVertex) != n u l l ;
31
32 i f (! neighbourSeen) {
33 ranks . put (neighbourVertex , neighbourVertexRank) ;
34 unprocessedVertices . addLast (neighbourVertex) ;
35 } e l s e i f (neighbourVertexRank < neighbourVertexRankOld) {
36 i f (getTrust (source , neighbourVertex) == n u l l) {
37 ranks . put (neighbourVertex , neighbourVertexRank) ;
38 } e l s e {
39 // The old rank must have come from a Trust of the source
40 // OwnIdentity s i n c e i t s Trusts are added to the queue
41 // f i r s t .
42 // I f an OwnIdentity ass igns a Trust , t h i s i s a mandatory
43 // d e c i s i on : I t s h a l l overwrite a l l e f f e c t s of Trusts of
44 // remote I d e n t i t i e s . Thus , the rank rece ived from other
45 // I d e n t i t i e s i s not used in t h a t case .
46 }
47 }
48 }
49 }
50
51 f o r (Identity target : getAllIdentities ()) {
52 Integer rank = rankValues . get (target) ;
53
54 i f (rank == n u l l)
55 getScore (source , target) . delete () ;
56 e l s e
57 getScore (source , target) . setRank (rank) ;
58 }
59 }

14 T H E O R E T I C A L B A C K G R O U N D

We shall notice that this aims to solve the so-called “SSSP” problem as defined by
[11]:

“single-source shortest-paths problem: given a graph G = (V ,E), we
want to find a shortest path from a given source vertex s ∈ V to each
vertex v ∈ V .”

The weight of edges is chosen to be ∞ if a Trust value is negative or zero, and 1
otherwise.
It could be considered a mixture of the concepts behind the breadth-first search
algorithm (BFS) [8] and less prominently Dijkstra’s algorithm [31].
Edges are walked in a breadth-queue like in BFS.
Unlike with graphs supported by BFS, the edges do not only use the single weight
of 1, but also the weight of ∞. This is why a mechanism of comparing against the
current best known distance seems to have been added to be able to handle the two
possible edge weights.
The Queue is not a PriorityQueue like in Dijkstra, which seems like a design issue.
Because the goal of this thesis is not to improve the full recomputation, but to get
rid of it completely in favor of an incremental one, this discovery has not been
attempted to be fixed. It was documented in the Freenet bugtracker at [32].
To understand the output of the algorithm, please observe the two possible value
ranges of the computed rank values:

1. [0,∞)

2. ∞
Case 1 can be interpreted as: The rank is the number of Trust steps from the source
OwnIdentity to the trustee. This aims to be a metric for “how good the source
knows a trustee”, i.e. how socially close they are: If Alice trusts Bob, and Bob trusts
Charlie, it would be 2. If instead Alice trusts Bob, Bob trusts Charlie, Charlie trusts
David, and David trusts Eric, a human would intuitively say that Alice and Eric
know each other more distantly than Alice and Charlie as described in the former
situation. And in fact, in the new situation, the rank will be 4 and therefore higher
than 2. Thus, the rank is considered as an acceptable metric for measuring how
close two Identities are socially.
Case 2 can be interpreted as: If an Identity has only received negative Trusts, it is to
be considered as distrusted. Thus, it should not have a rank, as rank measures social
closeness, and a distrusted Identity is rather isolated. For program logic reasons, to
mark an Identity as distrusted, a Score has to exist - but the Score needs a rank,
otherwise it would be deleted as seen in line 54. Thus, to be both able to give a
rank, but also mark it as “not really a good one”, the special value of ∞ is chosen.
It could be interpreted as “the identity is socially ostracized to the point where it is
infinitely far away from society”10.

10 The author is unable to stop himself from hereby stating that this definition is a beautiful choice of
the numeric value for the “no rank”-rank. It fits quite well!

2.2 T H E S C O R E C O M P U TAT I O N A L G O R I T H M 15

2.2.1.2 Computing capacities

The goal of capacities is to be a factor which is used to weigh Trust values with
when computing Score values from them.
Where rank computation was a way to define a metric how close an OwnIdentity
and a remote Identity are in the social graph, capacities are a function of ranks
to bend this metric to a usable 0 to 100% scale for the aforementioned purpose of
weighting Trusts.
The way capacities are computed can be described by the following
Java pseudocode which was simplified for ease of understanding 11 :

Listing 3: Capacity computation reference implementation (simplified) [33]
1 i n t computeCapacity (OwnIdentity source , Identity trustee , Integer rank) {
2 i f (rank == n u l l) {
3 // Notice : This case i s not used here .
4 // The rank not e x i s t i n g i s represented by the Score o b j e c t already
5 // being dele ted during rank computation . Nervertheless , f o r
6 // understanding , i t good to know the i n t e r p r e t a t i o n
7 // " no rank = no c a p a c i t y = no Score " .
8 re turn 0 ;
9 }

10
11 switch (rank) {
12 case 0 : re turn 1 0 0 ;
13 case 1 : re turn 4 0 ;
14 case 2 : re turn 1 6 ;
15 case 3 : re turn 6 ;
16 case 4 : re turn 2 ;
17 case < ∞ : re turn 1 ;
18 case ∞ : re turn 0 ;
19 }
20 }
21
22 assert (allScoreRanksHaveBeenComputed ()) ;
23
24 f o r (OwnIdentity source : getAllOwnIdentities ()) {
25 f o r (Identity target : getAllIdentities ()) {
26 Score score = getScore (source , target) ;
27
28 i f (score == n u l l)
29 continue ; // no Score = no rank = no c a p a c i t y
30
31 score . setCapacity (computeCapacity (source , target , score . getRank ())) ;
32 }
33 }

Without any actual proof in the documentation of the WoT source code, the follow-
ing loose observations were made for understanding why the capacity steps were
chosen like that:
By plotting the atomic capacity steps using an exponential y-axis, we are able to
conclude that they follow an exponential decay model.

11 The code which was removed in comparison to the official version of this function is likely not needed
anyway, which was documented at bugtracker entry [32].

16 T H E O R E T I C A L B A C K G R O U N D

Figure 2.1: Capacity value decay with growing rank

0.1

1

10

100

0 1 2 3 4 5

C
ap

ac
it

y

Rank

100/exp(x*0.925)
Capacities

The fact that the lowest possible value is reached after rank >= 5 would be possible
to guess to be related to the so called “six degrees of separation theory”. As the
capacity values will not be subject to any work in this thesis we settle for citing the
Wikipedia article [34] to define it:

“Six degrees of separation is the theory that everyone and everything is
six or fewer steps away, by way of introduction, from any other person
in the world, so that a chain of "a friend of a friend" statements can be
made to connect any two people in a maximum of six steps. ”

For further reading, please consult more reliable sources. Notably, the WoT source
code states that the values were inspired by “Advogato’s Trust Metric” [35].
Some non-scientific naive comments can nevertheless be made:
It shall be noted that the choice of capacity decay seems sound: The fact that every
human being is reachable in only 6 “Trust” steps shows that most decay of capacity
should happen before rank 6 to be soon enough to not give full capacity to everyone.
The chosen boundary of 5 is the next logical choice.
Also, the chosen function of exponential decay is a “natural” choice, i.e. a standard
fast decay function used in many decay processes.
Thus, it was decided to leave the capacity steps tuned as is during this thesis.

2.2 T H E S C O R E C O M P U TAT I O N A L G O R I T H M 17

2.2.1.3 Computing Score values

Up to now, we have understood how the reference implementation of Score com-
putation computes the fields Score.rank and Score.capacity. What is missing is the
actual “output” of Score computation: The value field.
When an OwnIdentity O assigns a Score to a remote Identity X, the value of the
Score is supposed to be a weighted average of the Trust values which X has re-
ceived. The value shall be delivered to applications built on top of WoT so they can
decide whether the content which X has published is trustworthy or not. Positive
values, including zero, indicate trust, negative ones indicate distrust. (For further
explanation, go back to page 10.)
Now that we have understood how the capacity uses the rank to define a percent-
age which is a measurement for how socially close an Identity is to an OwnIdentity,
we will be at ease to understand how Score values are computed using the capacity.
Thus, let us look at a simplified pseudocode:

Listing 4: Score value computation reference implementation (simplified) [36]
1 assert (allScoreRanksHaveBeenComputed ()) ;
2 assert (allScoreCapacitiesHaveBeenComputed ()) ;
3
4 f o r (OwnIdentity source : getAllOwnIdentities ()) {
5 f o r (Identity target : getAllIdentities ()) {
6 Score targetScore = getScore (source , target) ;
7
8 i f (targetScore == n u l l)
9 continue ; // No rank = no Score = no Score value

10
11 Trust sourceTrust = getTrust (source , target) ;
12
13 i f (sourceTrust != n u l l) {
14 // A Trust d e c i s i on of an OwnIdentity overwri tes a l l remote
15 // Trust d e c i s i o n s .
16 targetScore . setValue (sourceTrust . getValue ()) ;
17 continue ;
18 }
19
20 i n t value = 0 ;
21
22 f o r (Trust trust : getReceivedTrusts (target)) {
23 Score trusterScore = getScore (source , trust . getTruster ()) ;
24 i n t capacity ;
25
26 i f (trusterScore != n u l l)
27 capacity = trusterScore . getCapacity () ;
28 e l s e
29 capacity = 0 ; // No score = no rank = no c a p a c i t y
30
31 value += (trust . getValue () * capacity) / 1 0 0 ;
32 }
33
34 targetScore . setValue (value) ;
35 }
36 }

18 T H E O R E T I C A L B A C K G R O U N D

As we see, value computation is trivial: For each OwnIdentity source, and each
Identity target, sum up all trust values the target has received, and weight them
with the capacity of the Truster from the perspective of the OwnIdentity.
By understanding this, we now have learned how the core algorithm of WoT works.
To consolidate this knowledge, it is recommended to re-read the chapter about the
WoT data model at page 7.

2.2.2 Incremental Score computation upon Trust change

Let us remember what was said earlier: Before this thesis was written, there were
two Score computation algorithms present in WoT:

1. The reference implementation computeAllScoresWithoutCommit() which we
just discussed in depth. It will recompute the whole Score database from
scratch.

2. An optimized incremental Score computation algorithm which is able to only
update those Scores which need to be updated after a single Trust object
changed.

We will now learn to understand the existing incremental algorithm.
The need for such an algorithm becomes apparent if we remember how Identities
are pushed across the network as explained in detail on page 8:
WoT does not download the full graph of all Trust values in a single file. Instead,
small sets of trust values are downloaded in so-called “trust lists” which are pub-
lished in periodically released new editions of Identity files.
Thus, as the Trust graph is discovered in small pieces, an algorithm which handles
small pieces is needed: If the full Score computation algorithm was run for every
single changed Trust value, it would very likely recompute many Scores which
were not even affected by the changed Trust.
Hence, WoT contains a function updateScoresWithoutCommit(Trust oldTrust, Trust
newTrust) which handles changes upon a single Trust. It can be simplified to the
following pseudocode:

2.2 T H E S C O R E C O M P U TAT I O N A L G O R I T H M 19

Listing 5: Old incremental Score computation implementation (simplified) [37]
1 void updateScoresWithoutCommit (Trust oldTrust , Trust newTrust) {
2 i f (newTrust == n u l l) {
3 // Trust dele ted
4 computeAllScoresWithoutCommit () ; // Explained a f t e r t h i s code
5 return ;
6 }
7
8 i f (oldTrust != n u l l && oldTrust . value > 0 && newTrust . value <= 0) {
9 // Given rank could change

10 computeAllScoresWithoutCommit () ; // Explained a f t e r t h i s code
11 return ;
12 }
13
14 f o r (OwnIdentity source : getAllOwnIdentities ()) {
15 Queue<Trust> unprocessedEdges = new LinkedList < >() ;
16 unprocessedEdges . addFirst (newTrust) ;
17
18 while (! unprocessedEdges . isEmpty ()) {
19 Trust edge = unprocessedEdges . removeFirst () ;
20 Identity target = edge . getTrustee () ;
21
22 i f (target == source)
23 continue ;
24
25 Score newScore = getScore (source , target) . clone () ;
26 Score oldScore = newScore != n u l l ? newScore . clone () ;
27 : new Score (source , target) ;
28
29 // Compute ranks from the ranks of the t r u s t e r s , inc luding the
30 // new Trust .
31 newScore . rank = computeRankFromExistingData (source , target) ;
32
33 // computeCapacity () does not query Trusts/Scores , i t only uses
34 // the passed rank
35 newScore . capacity = computeCapacity (source , target , newScore . rank) ;
36
37 // Compiute value from the rece ived Trusts in lcuding the new Trust .
38 newScore . value = computeValueFromExistingData (source , target) ;
39
40 boolean rankCannotBeGivenAnymore =
41 (oldScore . rank >= 0 && oldScore . rank < ∞)
42 && (newScore . rank == −1 || newScore . rank == ∞) ;
43
44 i f (rankCannotBeGivenAnymore) {
45 computeAllScoresWithoutCommit () ; // Explained a f t e r t h i s code
46 return ;
47 }
48
49 boolean capacityCannotBeGivenAnymore =
50 oldScore . getCapacity > 0 && newScore . getCapacity == 0 ;
51
52 i f (capacityCannotBeGivenAnymore) {
53 computeAllScoresWithoutCommit () ; // Explained a f t e r t h i s code
54 return ;
55 }
56
57 // We ' re sure t h a t we won ' t abort now so we can update the database
58 getScore (source , target) . setRankCapacityValue (newScore) ;
59
60 boolean rankChanged = oldScore . rank != newScore . rank ;
61 boolean capacityChanged = oldScore . capacity != newScore . capacity ;

20 T H E O R E T I C A L B A C K G R O U N D

62
63 i f (! rankChanged && ! capacityChanged)
64 continue ; // Don ' t process t r u s t e e s , they cannot be a f f e c t e d .
65
66 boolean canGiveCapacity = newScore . capacity > 0 ;
67 boolean canGiveRank = newScore . rank >= 0 && newScore . rank < ∞ ;
68
69 i f (! canGiveCapacity && ! canGiveRank)
70 continue ;
71
72 f o r (Trust givenTrust : getGivenTrusts (target))
73 unprocessedEdges . addLast (givenTrust) ;
74 }
75 }
76 }
77
78 i n t computeRankFromExistingData (OwnIdenity source , Identity target) {
79 Trust sourceTrust = getTrust (source , target) ;
80 i f (sourceTrust != n u l l) {
81 // OwnIdentity d e c i s i on always wins .
82 re turn sourceTrust . value > 0 ? 1 : ∞ ;
83 }
84
85 i n t bestTrusterRank = −1; // No rank
86
87 f o r (Trust trust : getReceivedTrusts (target)) {
88 Score trusterScore = getScore (source , trust . getTruster ()) ;
89
90 i f (trusterScore == n u l l || trusterScore . rank == ∞)
91 continue ; // No rank to give , continue
92
93 // By ass igning a p o s i t i v e Trust , a Truster i s w i l l i n g to give h i s rank
94 // By ass igning a Trust <= 0 , he i s only w i l l i n g to give a rank of ∞
95 i n t giveableRank = trust . value > 0 ? trusterScore . rank + 1 : ∞ ;
96
97 i f (bestTrusterRank == −1 || giveableRank < bestTrusterRank)
98 bestTrusterRank = giveableRank ;
99 }

100
101 return bestTrusterRank ;
102 }
103
104 i n t computeCapacity (OwnIdentity source , Identity trustee , Integer rank) {
105 // Same as on page 15
106 }
107
108 i n t computValueFromExistingData (OwnIdentity source , Identity target) {
109 Trust sourceTrust = getTrust (source , target) ;
110 i f (sourceTrust != n u l l)
111 re turn sourceTrust . value ; // OwnIdentity d ec i s i on always wins .
112
113 i n t value = 0 ;
114 f o r (Trust trust : getReceivedTrusts (target)) {
115 Score trusterScore = getScore (source , trust . getTruster ()) ;
116 i n t capacity = trusterScore != n u l l ? trusterScore . capacity : 0 ;
117
118 value += (trust . value * capacity) / 1 0 0 ;
119 }
120 re turn value ;
121 }

2.2 T H E S C O R E C O M P U TAT I O N A L G O R I T H M 21

Let us not be deterred by the large amount of code which constitutes this algorithm.
Similar to the full score computation function we have discussed earlier, it operates
in a BFS-manner:
A deleted, created or modified Trust value can cause the rank, capacity or value of
the trustee to change, for example:

• If the trustee had not received a rank yet, if someone with a good rank starts to
trust the trustee, this will allow the trustee to obtain a rank. This also applies
inversely: If a Trust is removed, the rank its trustee had may disappear if it
came from the removed Trust.

• Capacities are computed from rank, and thus change along with it.

• Score values are computed from Trust values, and thus a changed Trust may
cause Score values to change.

Because of those possible changes, the incremental algorithm starts with updating
the Score rank/capacity/value of the receiver of the changed Trust. This induces
a chain of events though: If the rank or capacity of the Trust receiver has changed,
his trustees might have their Score rank, capacity and value affected as well. They
might have originally inherited the now changed rank or capacity from the Trust
receiver which will change theirs now. Or due to having been assigned a Trust from
him, they could also have their Score value changed due to his changed capacity
which weights his Trust.
Consequently, the same will apply to further trustees. So the algorithm deals with
all reachable trustees via BFS.
Now if we look more closely, we can see a problem though: Negative trust changes
such as removal of Trust values, disappearance of capacity and worsening of rank
all cause the algorithm to abort and fall back to full score recomputation by com-
puteAllScoresWithoutCommit().
This is obviously a huge performance issue (bugtracker: [38]): The full score recom-
putation code will recompute all Scores. It will ignore the knowledge that only a
single Trust value has changed, and thus fail to use the opportunity to optimize its
actions by only recomputing relevant Scores. With this observation, you have now
learned the specific goal of this thesis: To amend the incremental recomputation
algorithm to be able to handle those cases of disruptive Trust changes.
But before we move on to designing this optimization, let us first find out why the
existing incremental algorithm aborts upon negative Trust changes:
Look at the case where the algorithm does not abort: If we consider giving a Trust
value to someone as a “forward” arrow, the Queue will walk through the Trust
edges in “forward” BFS-manner. First the changed Trust is walked along forward,
then the given Trusts of the trustee, and so on. They are processed in waves of equal
rank, like walking from the core of an “onion” outwards to its shell.
This behavior is able to trickle down “positive” Trust changes, i.e. capacity in-
creases, correctly since they only affect precisely the “outer” circles of the Trust-

22 T H E O R E T I C A L B A C K G R O U N D

“onion”. The giver of a Trust is not affected by the Trust, only the receivers, and
their receivers.
Now what about negative Trust changes? If a Trust is changed to distrust Identity
X, and the Trust was source of the Identity’s capacity, then the capacity will decrease
(= worsen) to 0 instead of growing. Naively, we would say that the algorithm could
propagate this forwards just as positive Trust changes. But there is a problem with
the subroutine computeRankFromExistingData() because it uses the old ranks of the
trusters:
The distrusted Identity X may have previously received other Trust values than the
changed one - which might also have been giving a rank < ∞ and thus a capacity
of > 0.
So when calling computeRankFromExistingData() to compute the new rank from the
old ranks of the received Trusts, their old given ranks < ∞ would win against the
new rank of ∞ which the changed Trust value would give in theory. Or in other
words: The old, good capacities of > 0 would win against the new bad capacity of
0 which the changed Trust would give in theory.
But: These higher capacities might actually not originate from a Trust chain whose
direct source is an OwnIdentity. Instead, they might actually come from Trusts
given by the distrusted Identity itself, i.e. could be the result of a Trust circle. The
circle would route back the old capacities which the trustees had received from the
truster and give the truster capacity which came from himself. Notice how this is
not a problem with positive Trust changes: They cause growth of capacity. As ca-
pacity decreases with each Trust step, if the capacity of an Identity is grown, it will
always be greater than the capacity of a pre-existing circle which starts at it, and
thus win against the circle. So old circles can only win the capacity race if the capac-
ity decreased due to the negative Trust changes which we just discussed.
Therefore, a new algorithm which would be able to handle the described situation
could avoid walking in circles by doing a search for a valid path “backwards” to
an OwnIdentity. OwnIdentities are the proper source of ranks / capacities, so if we
search a full path to them, the resulting rank / capacity will be valid.
Finally, as the incremental algorithm walks forward, and merely distributes existing
ranks, not computes them freshly by finding complete Trust paths, we can conclude
that this algorithm is not suitable for doing what was just described as necessary.
Thereby, our goal in the actual thesis work shall now be to find a replacement al-
gorithm for filling in the cases where the current algorithm falls back to full Score
recomputation.

3 Results and Discussion

3.1 Presuppositions of the optimized incremental Score computation

As we’ve just discussed, the pre-existing incremental Score computation algorithm
refuses to handle certain special cases. Lets reconsider what is common among
those to find out assumptions a fill-in algorithms could make.

Listing 6: Abort conditions of old incremental Score computation (simplified) [37]
1 void updateScoresWithoutCommit (Trust oldTrust , Trust newTrust) {
2 boolean trustDeleted

3 = newTrust == n u l l ; // Given rank i s gone
4 boolean givenRankCouldChange

5 = oldTrust != n u l l && oldTrust . value > 0 && newTrust . value <= 0 ;
6
7 i f (trustDeleted || givenRankCouldChange) {
8 computeAllScoresWithoutCommit () ; re turn ;
9 }

10
11 . . .
12 Score newScore = // Score of the t r u s t e e or one of h i s t r u s t e e s ;
13 Score oldScore = newScore . clone () ;
14
15 newScore . rank = . . . ; newScore . capacity = . . . ; newScore . value = . . . ;
16
17 boolean rankCannotBeGivenAnymore =
18 (oldScore . rank >= 0 && oldScore . rank < ∞)
19 && (newScore . rank == −1 || newScore . rank == ∞) ;
20
21 boolean capacityCannotBeGivenAnymore =
22 oldScore . getCapacity > 0 && newScore . getCapacity == 0 ;
23
24 i f (rankCannotBeGivenAnymore || capacityCannotBeGivenAnymore) {
25 computeAllScoresWithoutCommit () ; re turn ;
26 }
27 }

The common factors here are at least:

• The rank given to the trustee has possibly disappeared since the Trust
changed to not allow giving a rank anymore.

• The capacity given to the trustee has possibly disappeared since the Trust
changed to not allow giving a capacity anymore.

This is identical to the problem with rank circles we have identified in the previous
chapter. Thus, the core goal of a replacement algorithm shall be to search a new
rank without running into circles (and then compute capacities from that). The re-
placement then also has to be propagated to the reachable trustee subgraph.
Additionally, the Score.value of the trustee might need updating due to the changed
value of the Trust; and Score values can also change where capacities to weigh them
have changed. But these parts are rather trivial to handle.

23

24 R E S U LT S A N D D I S C U S S I O N

We shall now proceed by amending the algorithm to call our new replacement in-
stead of computeAllScoresWithoutCommit(), which then shall handle the cases which
we just described:

Listing 7: Refactored old incremental Score computation to call new algorithm (sim-
plified) [39]

1 void updateScoresWithoutCommit (Trust oldTrust , Trust newTrust) {
2 i f (wouldFallbackToComputeAllScores . . .) {
3 Identity trustee = newTrust != n u l l ? newTrust . trustee
4 : oldTrust . trustee ;
5
6 updateScoresAfterDistrustWithoutCommit (trustee) ;
7 re turn ;
8 }
9 }

Notice how the Trust value itself does not have to be passed to the new algo-
rithm: The information which we just discussed about changed rank/capacity is
all it needs to know, and will be conveyed by the “AfterDistrust” in the function
name. (As usual, “WithoutCommit” is merely to meet the WoT programming style
of marking functions which do not commit the database transaction on their own.)

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 25

3.2 The optimized incremental Score computation algorithm

The heart of the optimized algorithm can be simplified to the following Java pseu-
docode:

Listing 8: New optimized incremental Score computation algorithm core (simpli-
fied) [40]

1 c l a s s ChangeSet<T> {
2 T beforeChange ;
3 T afterChange ;
4 }
5
6 void updateScoresAfterDistrustWithoutCommit (Identity distrusted) {
7 Map<ScoreID , ChangeSet<Score>> rankChanged

8 = updateRanksAfterDistrustWithoutCommit (distrusted) ;
9

10 Map<ScoreID , ChangeSet<Score>> capacityChanged

11 = updateCapacitiesAfterDistrustWithoutCommit (rankChanged . values ()) ;
12
13 Set<ScoreID> valueChanged

14 = updateValuesAfterDistrustWithoutCommit (distrusted , capacityChanged) ;
15
16 // The Score database i s up to date now .
17 // The s e t s can be used f o r generat ing event n o t i f i c a t i o n s f o r c l i e n t
18 // a p p l i c a t i o n s f o r example .
19 }

This core part of the algorithm has a control flow which follows the presuppositions
we made:
The distrusted Identity will suffer from a worsened rank, and its trustees may in
turn suffer from inheriting worse ranks. Thus, line 8 will compute the set of Scores
with changed ranks.
As capacities are computed from ranks, the capacities of the set of Scores which was
just computed will be updated by line 11.
Finally, Score values are the sum of Trust values an Identity has received, each mul-
tiplied by the capacity weight factor. Thus, all Score values have to be updated
where in the sum either a Trust value changed or the capacity changed. The job of
14 shall be to deal with his.
We may now proceed to discuss each of those three functions in detail.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 27

3.2.1 Updating Score ranks

The entry-point of the new algorithm is determining whether the rank of the dis-
trusted Identity changed, and which further rank changes this induces. It can be
summarized by this Java pseudocode:

Listing 9: New optimized incremental Score computation algorithm: updateR-
anksAfterDistrust...() (simplified) [41]

1 Map<ScoreID , ChangeSet<Score>>
2 updateRanksAfterDistrustWithoutCommit (Identity distrusted) {
3
4 Queue<Score> scoreQueue = new LinkedList < >() ;
5 Set<ScoreID> scoresQueued = new HashSet < >() ;
6 Set<ScoreID> scoresCreated = new HashSet < >() ;
7
8 // Add a l l Scores of the d i s t r u s t e d I d e n t i t y to the queue .
9 // We do t h i s by i t e r a t i n g over a l l OwnIdenti t ies ins tead via getScores () :

10 // There might * not * have been an e x i s t i n g Score o b j e c t from every
11 // OwnIdentity to the d i s t r u s t e d I d e n t i t y i f i t had not rece ived a Trust
12 // value yet ; and by the d i s t r u s t i t could now be e l i g i b l e f o r having one
13 // e x i s t .
14 // Thus , we must check whether we need to c r e a t e a new Score o b j e c t . We do
15 // t h i s by j u s t c r e a t i n g a l l p o s s i b l e Score o b j e c t s now, then t r y i n g to
16 // compute a rank in the next loop , and d e l e t i n g Score o b j e c t s again i f
17 // they cannot be j u s t i f i e d by a rank .
18 // (We do not have to do t h i s f o r t r u s t e e s of the d i s t r u s t e d I d e n t i t y : A
19 // d i s t r u s t e d I d e n t i t y ' s Trusts cannot c r e a t e Scores s i n c e i t i s not allowed
20 // to give a rank to i t s t r u s t e e s .)
21 f o r (OwnIdentity treeOwner : getAllOwnIdentities ()) {
22 Score outdated = getScore (treeOwner , distrusted) ;
23 i f (outdated == n u l l) {
24 outdated = new Score (treeOwner , distrusted) ;
25 scoresCreated . add (outdated . getID ()) ;
26 }
27
28 scoreQueue . add (outdated) ;
29 scoresQueued . add (outdated . getID ()) ;
30 }
31
32 Map<ScoreID , ChangeSet<Score>> rankChanged = new HashMap < >() ; // Resul t s e t
33
34 Score score ;
35 while ((score = scoreQueue . removeFirst ()) != n u l l) {
36 // computeRankFromScratch () w i l l be explained in a fol lowing pseudocode
37 // s t a r t i n g a t page 33 .
38 // I t so lves the " s ing le−pai r s h o r t e s t−path problem " [10]
39 // without r e l y i n g upon pre−e x i s t i n g rank values , i . e . only from Trusts .
40 i n t newRank = computeRankFromScratch (score . truster , score . trusee) ;
41
42 i f (score . rank == newRank)
43 continue ;
44
45 i f (newRank == −1) { // No rank
46 score . delete () ;
47 // I f we created the Score ou rs e l f , don ' t t e l l the c a l l e r about the
48 // dele ted rank : There was no rank before , we had only created the
49 // Score to cause an search f o r a poss ib ly newly e x i s t i n g rank .
50 i f (! scoresCreated . contains (score . id))

28 R E S U LT S A N D D I S C U S S I O N

51 rankChanged . put (score . id , new ChangeSet<Score >(score , n u l l)) ;
52 } e l s e {
53 Score oldScore

54 = scoresCreated . contains (score . id) ? n u l l : score . clone () ;
55
56 score . rank = newRank ;
57
58 rankChanged . put (score . id , new ChangeSet<Score >(oldScore , score)) ;
59 }
60
61 f i n a l OwnIdentity treeOwner = score . truster ;
62
63 f o r (Trust edge : getGivenTrusts (score . trustee)) {
64 Identity neighbour = edge . trustee ;
65
66 i f (scoresQueued . contains (new ScoreID (treeOwner , neighbour)))
67 continue ;
68
69 Score touchedScore = getScore (treeOwner , neighbour) ;
70 i f (touchedScore == n u l l)
71 // No need to c r e a t e a Score : This funct ion i s only c a l l e d upon
72 // d i s t r u s t . A d i s t r u s t e d i d e n t i t y cannot c r e a t e Scores f o r i t s
73 // t r u s t e e s s i n c e ranks can not be given i f the giver i s
74 // d i s t r u s t e d . With regards to c r e a t i n g Scores f o r the
75 // d i s t r u s t e d I d e n t i t y i t s e l f , we have already done t h i s in
76 // a separa te loop .
77 continue ;
78 }
79
80 scoreQueue . add (touchedScore) ;
81 scoresQueued . add (touchedScore . id) ;
82 }
83 }
84
85 return rankChanged ;
86 }

The function for updating ranks operates in a BFS-manner again.
We start at the distrusted Identity by recomputing its rank via computeRankFrom-
Scratch(), and then trickle down the changed rank to its trustee-subgraph.
computeRankFromScratch() is the most important difference to the old algorithm:
This function is an optimized version of a standard graph algorithm to solve the
“single-pair shortest-path problem” (SPSP) [10] to find a new rank without causing
the problem of running into circles which was described at page 21. The problem
was triggered by re-using old data instead of searching a new path, and a SPSP
algorithm can search a completely new path “from scratch” as the function name
indicates1.
The optimization which was applied to the standard SPSP algorithm can also be
considered as quite interesting, which is why its code will not be discussed now
but in a section following on page 33.
If the concept of rank circles was too complex to understand, the problem can also
be explained in an incomplete but more simple manner like this:

1 Notably, an algorithm which searches a shortest path cannot yield circles as walking in a circle is
longer than the shortest path. But our problem really was more the creation of data which includes
circles by mixing old and new data.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 29

A shortest path search is necessary as a new negative Trust value means that an
identity is not allowed to give a rank to its trustees anymore. Thus, the other Trust
values which the trustees have received must be considered as potential entry
points for a shortest path to obtain a new rank. So the rank which came from the
disappeared Trust edge is attempted to be “re-routed” by finding a new shortest
path to a source OwnIdentity.
If the rank of the distrusted Identity changed, we then continue with updating
the ranks of its trustees: They got their ranks from the distrusted Identity, so if
its rank changed, theirs will as well. The problem then additionally propagates to
their trustees, and so forth.

P E R F O R M A N C E While the performance of the whole new incremental Score
computation algorithm will be measured at page 42, we nevertheless shall already
observe why its performance may be improved due to the pseudocode which we
just discussed:
The old algorithm did fall back to using computeAllScoresWithoutCommit(), which
will recompute the ranks of all Identities, i.e. solve the single-source shortest paths
problem [11]; while the new algorithm solves the single-pair shortest path problem
[10] multiple times. At best, it is even only solved once: If the rank of the distrusted
Identity did not change, the rank of its trustees will not be recomputed. This allows
us to observe:

Lemma 1 Let N = |Identities| and let |OwnIdentities| = const.
In the case where the old algorithm had to try to find Ω(N) paths, the new algorithm will
only have to try to findΩ(1) paths 2.

Notice how this Lemma specifies the amount of output we request from the search
algorithm, not its runtime. Nevertheless, the fact that in the best case the algorithm
only is requested to find one shortest path instead of plenty can be assumed to
greatly reduce the efforts it has to invest.

2 While we hereby specified a minimum, i.e. best case, the worst case is however that the new algorithm
runs the SPSP algorithm N times - once for every Identity! The probability of this worst case and
possible solutions to avoid it will be discussed in the chapters about measurements and possible
future work, see pages 42 and 54.

30 R E S U LT S A N D D I S C U S S I O N

3.2.2 Updating Score capacities

Once changed ranks are determined, the new incremental Score computation algo-
rithm will proceed to update capacities. The input dataset to the function which
provides that is the set of changed ranks, as capacities are computed from ranks.

Listing 10: New optimized incremental Score computation algorithm: updateCa-
pacitiesAfterDistrust...() (simplified) [42]

1 Map<ScoreID , ChangeSet<Score>> updateCapacitiesAfterDistrustWithoutCommit (
2 Collection<ChangeSet<Score>> rankChanged) {
3
4 Map<ScoreID , ChangeSet<Score>> capacityChanged = new HashMap < >() ;
5
6 f o r (ChangeSet<Score> changeSet : rankChanged) {
7 Score score = changeSet . afterChange ;
8 i f (score == n u l l) {
9 // E x i s t i n g Score dele ted −> Rank deleted −> Capacity dele ted

10 capacityChanged . put (changeSet . beforeChange . id , changeSet) ;
11 continue ;
12 }
13
14 // Same funct ion as on page 15
15 score . capacity
16 = computeCapacity (score . truster , score . trustee , score . rank) ;
17
18 capacityChanged . put (score . id , changeSet) ;
19 }
20
21 return capacityChanged ;
22 }

The capacity computation part of the new incremental Score computation algo-
rithm is not worth much attention: As we have seen on page 15, computing ca-
pacities is merely a mapping of a single independent scalar to a gauge unit.
As the new rank computation code has produced a flat Collection of changed ranks,
and capacities are are mapping of ranks, their computation is a simple iteration
over the Collection.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 31

3.2.3 Updating Score values

After changed ranks and capacities are calculated, the new incremental Score com-
putation algorithm will finish by updating Score values. Score values are a sum of
Trust values weighted by Score capacities. So the input to the function for updat-
ing Score values is which Trust value changed (represented by passing the Identity
whose Trust changed to distrust) and which capacities have been changed.

Listing 11: New optimized incremental Score computation algorithm: updateVal-
uesAfterDistrust...() (simplified) [43]

1 Set<ScoreID> updateValuesAfterDistrustWithoutCommit (Identity distrusted ,
2 Map<ScoreID , ChangeSet<Score>> capacityChanged) {
3
4 Set<ScoreID> valueChanged = new HashSet < >() ;
5
6 // Normally , we might have to check whether a new Score has to be created
7 // due to the changed t r u s t value
8 // − but updateRanksAfterDistrustWithoutCommit () did t h i s already .
9 f o r (Score score : getScores (distrusted)) {

10 score . value = computeValueFromExistingData (score . truster , distrusted) ;
11 valueChanged . add (score . getID ()) ;
12 }
13
14 f o r (ChangeSet<Score> changeSet : capacityChanged . values ())
15 Score scoreWithUpdatedCapacity = changeSet . afterChange != n u l l ?
16 changeSet . afterChange : changeSet . beforeChange ;
17 OwnIdentity treeOwner = scoreWithUpdatedCapacity . truster ;
18 Identity trustGiver = scoreWithUpdatedCapacity . trustee ;
19
20 f o r (Trust givenTrust : getGivenTrusts (trustGiver)) {
21 Identity trustee = givenTrust . trustee ;
22 ScoreID scoreID = new ScoreID (treeOwner , trustee) ;
23
24 i f (! valueChanged . add (scoreID))
25 continue ; // The Score was processed already .
26
27 Score score = getScore (treeOwner , trustee) ;
28 i f (score == n u l l) {
29 // No need to c r e a t e i t : updateRanksAfterDistrustWithoutCommit ()
30 // has already created a l l s c o r e s which could be created .
31 continue ;
32 }
33
34 // Same as on page 20
35 score . value = computeValueFromExistingData (treeOwner , trustee) ;
36 }
37 }
38 }

A Score value of an Identity from the perspective of an OwnIdentity is the sum of
all Trust values the Identity has received, multiplied by the capacity weight factor
each Trust giver has received from the perspective of the OwnIdentity:

value(o, i) =
∑

t.trustee=i

t.value ∗ capacity(o, t.truster)/100

32 R E S U LT S A N D D I S C U S S I O N

This sum can change if any of the addends changes. Thus, to determine the cases
in which the Score value has changed, we use two loops to walk each of the two
possibly changed factors in the addends:

1. The t.value factor changes for Scores for which an included Trust value has
changed. In our case this is Scores which the distrusted Identity has has re-
ceived since the only changed Trust value is the one of that Identity.

Remember: This is because updateScoresAfterDistrustWithoutCommit() is to be
triggered by updateScoresWithoutCommit(Trust oldTrust, Trust newTrust), which
is called when a single Trust value has changed, and the distrusted Identity is
the receiver of that value.

The loop at line 9 deals with this case.

2. The capacity weight factor changes for Scores in which a Trust value is in-
cluded for which the capacity of the giver of the Trust value has changed.

Thus, if the capacity of an Identity changed, we need to check for each of its
given Trusts whether a Score exists which includes it. As the function receives
a set of changed capacities, we must walk the given Trusts of the Identities in
the set.

This is what the loop at line 14 does.

P E R F O R M A N C E There are two aspects to guarantee the performance of this al-
gorithm:

• Similar to the advantages of the new rank computation over the old one
which we had described on page 29, instead of blindly recomputing all
Score values, this algorithm only recomputes Score values which may have
changed. This is done by walking the variable addends of the Score value
sums as we had just described.

This yields:

Lemma 2 Let N = |Identities| and let |OwnIdentities| = const.

In the case where the old algorithm had to compute Ω(N) Score values, the new
algorithm will only computeΩ(1).

• By keeping a Set which tracks which Score values were recomputed already
at line 4, the algorithm ensures that each possibly changed Score value is not
computed more than once.

This is necessary because the Trust values of multiple Identities are used to
determine the Score values of which Identities to update; and the Trusts of
multiple distinct Identities might point to the same trustee Identities.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 33

3.2.4 Choice and optimization of SPSP algorithm to fit structural proper-
ties of WoT graph

As we have noticed during the discussion of the new incremental Score com-
putation algorithm updateScoresAfterDistrustWithoutCommit(Identity distrusted), its
entry-point is the recomputation of ranks using the function computeRankFrom-
Scratch(OwnIdentity source, Identity target). Using this function, the Score compu-
tation algorithm will recompute the rank of the distrusted Identity. If its rank
changed, then it will proceed to recompute the ranks which that Identity may have
given to other Identities, and continue with recomputing their given ranks, etc.
We shall now have a look at how computeRankFromScratch() works.

3.2.4.1 First development iteration: computeRankFromScratch() using
the “uniform-cost search” algorithm

For ease of understanding, let us begin with considering the first unoptimized ver-
sion of computeRankFromScratch().

Listing 12: New optimized incremental Score computation algorithm: computeR-
ankFromScratch() initial version (simplified) [44]

1 i n t computeRankFromScratch (OwnIdentity source , Identity target) {
2 // OwnIdentity rank d e c i s i on must overr ide a l l other paths .
3 Trust directSourceTrust = getTrust (source , target) ;
4 i f (directSourceTrust != n u l l)
5 re turn directSourceTrust . value > 0 ? 1 : ∞ ;
6
7 c l a s s Vertex implements Comparable<Vertex> {
8 Identity identity ;
9 Integer rank ;

10
11 i n t compareTo (Vertex o) { re turn rank . compareTo (o . rank) ; }
12 }
13
14 PriorityQueue<Vertex> queue = new PriorityQueue<Vertex > () ;
15 Set<Identity> seen = new HashSet < >() ;
16
17 seen . add (source) ;
18 f o r (Trust sourceTrust : getGivenTrusts (source)) {
19 i n t rank = sourceTrust . value > 0 ? 1 : ∞ ;
20
21 // I n i t i a l i z e queue
22 queue . add (new Vertex (sourceTrust . trustee , rank)) ;
23
24 // OwnIdentity rank d e c i s i on must overr ide a l l other paths .
25 // We prevent the I d e n t i t y from being able to r e c e i v e a rank
26 // from others by marking i t as seen even though i t wasn ' t yet .
27 seen . add (trustee) ;
28 }
29
30 while (! queue . isEmpty ()) {
31 Vertex vertex = queue . removeMinimum () ;
32
33 i f (vertex . identity == target)

34 R E S U LT S A N D D I S C U S S I O N

34 return vertex . rank ;
35
36 // I d e n t i t y has reached maximum rank and thus may not give a
37 // rank to i t s t r u s t e e s −> No need to look at them .
38 i f (vertex . rank == ∞)
39 continue ;
40
41 seen . add (vertex . identity) ;
42
43 f o r (Trust trust : getGivenTrusts (vertex . identity)) {
44 Identity neighbour = trust . trustee ;
45
46 i f (seen . contains (neighbour))
47 continue ;
48
49 i n t neighbourRank = trust . value > 0 ? vertex . rank + 1 : ∞ ;
50 Vertex neighourVertex = new Vertex (neighbour , neighbourRank) ;
51
52 queue . decreaseKey (neighbourVertex)
53 }
54 }
55
56 return −1; // Not path found −> No rank .
57 }

As we remember that the purpose of computeRankFromScratch() is to find a solution
to the “single-pair shortest-path problem” (SPSP) [10], we notice that the algorithm
is very similar to the familiar Dijkstra’s algorithm [31] which solves the “single-
source shortest-paths problem” (SSSP) [11]:
Same as Dijkstra, it inserts the vertices (= Identities) in a PriorityQueue where
the priority is the current known shortest path length to a vertex. Also like Dijk-
stra, it walks the PriorityQueue by extracting the vertex with the minimal distance,
and then explores its neighbors by decreasing the priority of them to the possibly
shorter path induced by the edges to the neighbors.
Other than Dijkstra, it aborts once the target vertex is found, which can without
proof be imagined as the natural way of transforming a SSSP algorithm to a SPSP
one [10].
However, there is one outstandingly significant difference to the Dijkstra algorithm
which is the reason why the algorithm which inspired computeRankFromScratch()
has its own name of “uniform-cost search algorithm” [12] [13]:
Instead of initializing the PriorityQueue with the set of all vertices, only a few 3

vertices are added first. The majority of the vertices are then added on-demand as
they are discovered by walking edges.

P E R F O R M A N C E The gradual enqueuing of vertices, in our case Identities, can
be believed to be a very suitable choice for the use case of WoT: As we learned on

3 We hereby notice the most prominent difference to the UCS-algorithm: At line 18, instead of initial-
izing the queue by just adding the source OwnIdentity, the first iteration of the queue processing
loop was extracted into a separate loop. That loop processes the trustees of the source OwnIdentity
in a different fashion than the main loop would do: It enforces the policy of the OwnIdentity’s rank
decision overriding remote rank decision - by marking the trustees of the OwnIdentity as seen before
even having actually processed them, their ranks can be made read-only in the PriorityQueue.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 35

page 8, one of the main jobs of WoT is discovering Identities by accumulating yet
unknown Identities from Trust lists of already known ones. And by having a closer
look, we may notice that it will discover almost all worldwide existing Identities: If
we assume human interaction to be mostly peaceful, then most Trust values are
positive, and hence are eligible for discovery of their target Identities. If we further
assume the “social graph” of Identities to be well-connected by Trust values, as for
example the “six degrees of separation theory” [34] may indicate, then the graph
will not be partitioned an in fact most worldwide users will be reachable by Trust
steps.
As a consequence, the WoT database of all Identities will be very large. If they
were not enqueued gradually in the UCS-fashion, but all at once like with Dijk-
stra, then this would cause exhaustive memory usage. Further, as a PriorityQueue
is a sorted queue, the runtime of the operations which yield the sorting would be
non-negligible for large contents.
We thereby may recognize the UCS-algorithm with its on-demand exploration as a
natural fit for the large-graph SPSP problem of WoT.

P E R F O R M A N C E P I T F A L L The algorithm was in fact first implemented as just
described. Profiling of the whole of incremental Score computation using this im-
plementation of computeRankFromScratch() unfortunately showed execution times
which were so exorbitantly large that doing benchmarks which significant sample
count would have taken days. The reason for this can be identified as follows:
If there is no path existing from source to target, the algorithm will have to walk all
reachable vertices and edges to be able to conclude that no path exists. This is also
described in literature [10] as the worst case of SPSP being as slow as the fastest
way of solving the whole of SSSP, i.e. finding shortest paths to all reachable targets.
This problem is exacerbated by our usage pattern of computeRankFromScratch():
As shown on pages 23 to 27, we use it in updateScoresAfterDistrust...() to find a new
rank for Identities which have been distrusted by removal of a single Trust value. If
an Identity is not only distrusted by removal of the single Trust value which caused
this function call, but also by the fact that it has received no other Trusts, then there
will not be a reachable rank path.
And one might assume that having received one distrust indicates a high probabil-
ity of not receiving any other positive Trust: Distrust is intended to be used only for
combating spam (page 9), and it seems probably that someone is either a spammer
or not, and thus having received one distrust is a good indicator for not receiving
any non-distrust at all.
Overall, then the probable situation at our usage of computeRankFromScratch() is the
case where the target Identity is fully distrusted, and thus no rank path exists. So
we will usually run into the worst case of walking the whole graph of all Identities
and Trusts!

36 R E S U LT S A N D D I S C U S S I O N

To alleviate the impact of this, an optimization of the way UCS is used was invented
and shall be discussed in the following section 4

4 In a personal note, it shall be stated that the following optimization might be considered the most
interesting idea of this thesis, and thus reading it is strongly recommended.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 37

3.2.4.2 Second development iteration: computeRankFromScratch() using
optimized UCS algorithm

With a slight modification compared to the code we just discussed, the following
algorithm shows improved behavior with regards to fully distrusted Identities.

Listing 13: New optimized incremental Score computation algorithm: computeR-
ankFromScratch() optimized version (simplified) [45]

1 i n t computeRankFromScratch (OwnIdentity source , Identity target) {
2 c l a s s Vertex implements Comparable<Vertex> {
3 Identity identity ;
4 Integer rank ;
5
6 i n t compareTo (Vertex o) { re turn rank . compareTo (o . rank) ; }
7 }
8
9 PriorityQueue<Vertex> queue = new PriorityQueue < >() ;

10 Set<Identity> seen = new HashSet < >() ;
11
12 seen . add (target) ;
13 f o r (Trust targetTrust : getReceivedTrusts (target)) {
14 i n t rank = targetTrust . value > 0 ? 1 : ∞ ;
15
16 // I f a Trust e x i s t s from the OwnIdentity source to the t a r g e t ,
17 // then i t must always overr ide any other remote rank paths .
18 i f (targetTrust . truster == source)
19 re turn rank ;
20
21 queue . add (new Vertex (targetTrust . truster , rank)) ;
22 }
23
24 while (! queue . isEmpty ()) {
25 Vertex vertex = queue . removeMinimum () ;
26
27 i f (vertex . identity == source)
28 re turn vertex . rank ;
29
30 seen . add (vertex . identity) ;
31
32 Trust trustFromSource = getTrust (source , vertex . identity) ;
33 i f (trustFromSource != n u l l) {
34 // Again OwnIdentity rank d e c i s i o n always wins
35
36 i f (trustFromSource . value > 0) {
37 i n t rank = vertex . rank + 1 ;
38 queue . decreaseKey (new Vertex (source , rank)) ;
39 } e l s e {
40 // An I d e n t i t y with a rank of ∞ may not give i t s
41 // rank to i t s t r u s t e e s . So the only case where the rank of an
42 // I d e n t i t y can be ∞ i s when i t i s the l a s t in the
43 // chain of Trust s teps .
44 // By adding the rece ived Trusts of the search t a r g e t to the
45 // queue before s t a r t i n g to process the queue , we already
46 // consumed the l a s t l i n k s of the chain . Here we can only be
47 // at l a s t + 1 , l a s t + 2 , e t c . So a t t h i s point , a rank of
48 // ∞ cannot be given because i t would be in
49 // the middle of the chain , not a t the end .
50
51 /* queue . decreaseKey (new Vertex (source , ∞)) ; */

38 R E S U LT S A N D D I S C U S S I O N

52 }
53
54 continue ;
55 }
56
57 f o r (Trust trust : getReceivedTrusts (vertex . identity)) {
58 Identity neighbourVertex = trust . getTruster () ;
59
60 i f (seen . contains (neighbourVertex))
61 continue ;
62
63 i f (trust . getValue () > 0) {
64 i n t rank = vertex . rank + 1 ;
65 queue . decreaseKey (new Vertex (neighbourVertex , rank)) ;
66 } e l s e {
67 // Same as above
68 /* queue . decreaseKey (new Vertex (neighbourVertex , ∞)) ; */
69 }
70 }
71 }
72
73 return −1; // Not path found −> No rank .
74 }

We compare the initialization of the PriorityQueue at line 13 with the similar code
of the previous implementation of the algorithm (page 33 line 18): Where the old
implementation initialized the queue with the given Trusts of the source OwnIden-
tity, the new one will begin with the received Trusts of the target Identity.
Hereby we notice that the primary change of the algorithm is a mere reversal of the
search direction: It searches from target to source instead of from source to target.

P E R F O R M A N C E One might wonder why reversing the search direction is
claimed to improve the performance of the algorithm - SPSP sounds like a sym-
metrical problem. But it is not with regards to the dataset of WoT: Distrust of an
Identity “blocks” edges related to it. A distrusted Identity, which is one with no
rank or a rank of ∞ (see pages starting at 13), either

• has not received any Trust, and thus may not receive a rank. The edges of
received Trusts to it are “blocked” by not even existing.

• has only received negative Trusts, thereby has a rank of ∞, and may not give
a rank to its trustees as the rank of ∞ is not inheritable. The edges of given
trusts going outside from it are “blocked”.

This behavior of blocked edges causes less work for the algorithm since it does not
have to walk along them. And with regards to a fully distrusted Identity, the graph
will decompose into two disconnected sub-graphs where the distrusted Identity
and its trustees are one of them, and the trusted Identities constitute the other sub-
graph.
Imagine this as society splitting into two social networks where one is “good” and
the other is “evil”. They are disconnected as “good” does not trust “evil”.
Let us remember again that the problem we are trying to optimize is the case where
no path between source and target exists - the old algorithm would then have to

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 39

exhaustively search all possible edges in the graph, which took a long time. This
is the problem of a graph split into “good” / “evil” which we just imagined. The
central reason for a performance improvement by walking backwards from “evil”
to “good” now can be discovered in the following assertion:

Lemma 3 There will be a lot less “evil”, distrusted Identities in a typical WoT database
than “good”, trusted ones.

Thus, if the algorithm starts searching at the “evil” side, it will have to walk a much
smaller sub-graph until it runs into a wall of blocked edges and can realize that no
path exists.
Luckily, we may acknowledge that the assertion of “there are more good than evil
Identities” is not axiomatic, i.e. not an optimist’s good faith of “good always wins
over evil”, but a provable logical conclusion if we remember the core goal of WoT
Score computation as explained on pages starting at 10: To prevent client applica-
tions and WoT from downloading content published by spammers. So Identities
with a bad Score will not be downloaded. Hence, when WoT does not download
the content of a distrusted Identity as it may be spam, this includes the Trust val-
ues given by the Identity - they will also not be downloaded. Identities only being
reachable through Trust values of distrusted Identities will thus not be discovered
by WoT, they stay in the “darkness” of the “evil” subgraph. So the subgraph of the
“evil” Identities is sparsely populated - it only includes as many Trusts and Identi-
ties as were downloaded before the Trusts of other Identities stigmatized the “evil”
ones as such. The subgraph of the “good” Identities instead will be downloaded in
its complete vastness.
Overall, we can thus assume that in the worst case of no Trust path existing from
source to target, the new algorithm which walks backwards does have a much
smaller subgraph to explore before it can conclude that no path exists. This im-
proves the runtime of the worst case as desired.

A D D I T I O N A L P E R F O R M A N C E B E N E F I T As the comment on line 40 explains,
there is another minor performance benefit from walking the Trust graph back-
wards:
The rank value of ∞ is not allowed to be inherited, and so when walking backwards
we may not walk across it. I.e. we must stop walking rank chains upwards if we
encounter it. In other words, ∞ can only happen as a leaf rank.
This observation is used to reduce the size of the PriorityQueue: The leaf vertices
of the queue were already processed outside of the main loop, in a separate setup
loop at line 13. Thus, the main loop cannot encounter leafs and does not need to
add ∞ to the queue.
This was not the case when walking forwards (page 33): There, the valid ranks of∞ could not be guessed at the initialization of the queue since the initialization did
not start at the leafs, and so all ranks of ∞ had to be added during the main loop.

40 R E S U LT S A N D D I S C U S S I O N

3.2.5 Synopsis of new incremental Score computation

Our discussion of the new optimized incremental Score computation algorithm is
now finished. Before we proceed to measuring its performance in practice, we shall
prepare to decide how to measure it by recollecting what we have learned in this
chapter so far:

• When a single Trust value changes or is deleted, WoT will trigger an incre-
mental Score computation algorithm to update Score.rank, Score.capacity and
Score.value of Scores which are affected by the Trust (page 19).

• Before the thesis, there already was an incremental Score computation algo-
rithm (page 19). It was unable to handle the case where a Trust changed to
“distrust”, i.e. when the Trust was removed or changed to a negative value. It
did fall back to recomputing all Scores from scratch (page 23).

• The thesis fulfilled the goal of inventing a fill-in incremental Score computa-
tion algorithm which handles the aforementioned case of Trust changing to
distrust: updateScoresAfterDistrustWithoutCommit(Identity distrusted) (page 25).

• The algorithm for handling distrust incrementally is powered by recomput-
ing Score attributes which could be touched by the distrust:

– The rank of the distrusted Identity (page 27), as the rank may have been
received through the Trust edge which was removed. The rank is recom-
puted by a standard “single-pair shortest path” graph algorithm which
was specially adapted to work well in consideration of structural prop-
erties of the WoT data (“less evil than good Identities”).

– If the rank of the distrusted Identity changed, the ranks of Identities
which have received Trusts from it may also change and because of that
are recomputed (page 27). If their ranks do also change, the ranks of Iden-
tities trusted by those will be recomputed next, and so forth. Ranks are
inherited, so changed ranks have to be tricked down.

– The capacities of all Identities for which the rank changed (page 30), as
capacity is computed from rank.

– The Score values of all Scores for which the Trust value of an in-
cluded Trust changed; or for which the capacity which weights a Trust
changed (page 31). The amount of changed Trust values is only 1 here -
the changed Trust which triggered incremental Score computation. The
amount of changed capacities is those which were induced by changed
ranks as said above.

From the overview we have just had, we can realize that the amount of iterations
which the new distrust computation algorithm has to execute is dominated by the
amount of changed ranks: The count of changed ranks defines count of changed ca-
pacities, and the count of changed capacities dominates the number of Score values
it has to recompute.

3.2 T H E O P T I M I Z E D I N C R E M E N TA L S C O R E C O M P U TAT I O N A L G O R I T H M 41

Thus, for creating a conclusive measurement, we will aim for triggering a “stress-
ful” situation for the new algorithm by doing something which may induce rank
changes.

42 R E S U LT S A N D D I S C U S S I O N

3.3 Benchmark

3.3.1 Choice of benchmark

We will now investigate multiple different approaches of measuring the perfor-
mance improvement of the new algorithm, and eventually shall decide to use one
of them.

3.3.1.1 Mathematical analysis

Without any doubt, it can be agreed that a mathematical proof of the asymptotic
runtime in Landau notation is the most solid evidence of success which could be
given to the new algorithm.
Unfortunately, with regards to the specific situation of Freenet, and the time con-
straints of a bachelor’s thesis which only allow a single type of benchmark, it does
not seem to be the optimal strategy to use a mathematical proof as the only result.
This is because the software engineering aspect of ensuring long-term maintainability
of the software would be violated:
Freenet is a mostly volunteer-driven project. During the thesis period, when for
example having a look at the team chat, there were usually about 80 people in the
chat room - of which only 2 are employed by the Freenet foundation. Furthermore,
the foundation currently only has 2 months of donation funding left [19] to pay
those employees.
Years of personal experience with volunteer-driven projects show that volunteers
prefer to do “fun stuff”, where “fun” usually means writing new code. Tedious
maintenance tasks such as writing documentation are very often ignored - there
is no boss to force volunteers to commit to such aspects. And the complexity of
mathematical proofs is far beyond writing standard documentation.
Because of that, there is a high probability that a mathematical proof would only
be valid for as long as no volunteer decided to continue improving the algorithm
without adapting the proof.
In opposite to that, a benchmark software will continue to yield comparable results
as long as it treats the Score computation code as a black box. By merely measuring
the execution time of high-level public API 5 functions, the benchmark still can
compile against evolved code if only the internal algorithms which power the API
changed. With this approach, volunteers may recycle the benchmark provided by
the thesis.
Another benefit of providing a benchmark framework is fostering volunteer work:
Even without mathematical proofs, performance optimizations as the one con-
ducted by this thesis can be considered as non-“fun stuff”: The software does still
work without them, it is just slower. Doing such work does not satisfy the volun-
teer’s desire of creating something new, and seeing results quickly - volunteers may
likely defer such work work. Providing a way for volunteers to immediately see

5 Application Programming Interface

3.3 B E N C H M A R K 43

the results of their work through an easy-to-use benchmark may hence motivate
them to do tackle complex performance work.
While considering these benefits, and since the thesis timespan only was sufficient
for one performance metric, it was decided to implement a future-proof software
benchmark instead of a mathematical proof for both the old and new algorithm.
However, for considerations of possible future work, the conclusions at page 51
will at least have a brief look at the worst case runtime of the new algorithm.
Several types of software benchmarks were implemented, and we may now study
them to be able to decide which one will be the best to fully conduct.

3.3.1.2 Real world benchmark

As promised in the agreement of the thesis’ goals, a benchmark was implemented to
measure the total time of Identity file import of all Identity files which were processed
in an execution of WoT [46]. Please first consult page 8 if you need to refresh your
knowledge of what an Identity file is.
As suggested by F. Daignière for performance reasons explained at page 63, the
code which parses Identity files was changed from direct parsing in memory to
serialize them to a disk-based queue [47]. In an own decision, it was made able to
archive them after processing [48]. The archive will both contain the files themselves
as well as the order in which they were processed. This can be considered as a full
dump of the real WoT network.
It was made possible to repeat a sequence of Identity file imports in a determin-
istic way [49]; and to measure the time it takes for all involved computations (by
the aforementioned total import time). This would allow measuring the total time
it takes to bootstrap a WoT database with an import of the full current dataset of
the real network’s Identities, Trusts and Scores. It would also allow to repeat the
measurement with both the old and the new Score computation algorithm for com-
parison.
There are further advantages to Identity file queuing, including a performance im-
provement, which will be discussed on pages 63 and 64 .
Both unfortunately and fortunately, these measurements of total Identity file com-
putation time did not yield statistical significance with regards to quantifying
performance of the new updateScoresAfterDistrust...(): The WoT community is too
“peaceful” currently, there were only a few hundred distrust operations happening
when importing a total dataset of over 200 000 Trusts. Not only is less than a thou-
sand samples not of statistical significance - the speed difference between the old
and new algorithm would also drown in the much greater total execution time of
more than 200 000 non-distrust operations whose execution time did not change.
Thus the plan to use total import time of real world Identity files for benchmark
had to be scrapped in favor of a synthetic benchmark which provokes the situations
which we want to investigate.

44 R E S U LT S A N D D I S C U S S I O N

VA L I D I T Y O F T H E S I S G O A L I N T H E L I G H T O F U N A F F E C T E D T O TA L C O M -
P U TAT I O N T I M E The careful reader might question the importance of the thesis’
overall goal of optimizing distrust computation now that it has become apparent
that its poor performance did not affect total computation time a lot. It can be be-
lieved that the importance is nevertheless given:
The analyzed Identity file network dumps were a snapshot of the network at a
finitely short timespan of less than a day. They thus do not represent the tempo-
ral development of Trust values over weeks or months. Identities might actually
change them from positive to negative and vice versa a lot.
Further, an attacker might intentionally constantly flip the signum of Trust values
to trigger the expensive distrust computations.
And most importantly, the execution times of the old distrust computation code of
close to a minute (which the following measurements will show) would then block
the UI of WoT for the whole of that time due to a difficult to fix issue in the way
the database is used (see [4]). It is a great usability issue if a user interface becomes
unresponsive for such a long time; especially if attackers may trigger this as was
just described: To distrust attackers to prevent them from conducting this attack, it
is necessary to be able to access the UI.

3.3.1.3 Synthetic benchmark

Since the real world benchmark was unable to provide a sufficient frequency of
updateScoresAfterDistrust...() events, the next logical step in determining a way to
benchmark this function was an artificial benchmark which is purposefully crafted
to:

• cause the function to be called a lot.

• produce a random Identity and Trust graph of proper dimensions to yield an
input size both sufficiently large for statistical significance, and sufficiently
small to not cause excessive runtime of the benchmark.

• allow free choice of the size of the generated graph for tweaking the runtime
to be appropriate for what is measured.

The first implementation of this [50] was trivial: All which had to be done is using
the pre-existing unit test framework of WoT. It already provided functions for pro-
ducing completely random graphs of Identities and Trusts. This code then only had
to be amended to remove randomly chosen Trust values.
But after looking at the way the random graphs are generated, the scientific valid-
ity of this benchmark turned out to be questionable: The topology of the real WoT
network’s social graph is not studied yet, and thus was not simulated in the ex-
isting random Trust graph generation code. The Trust edges were chosen to hold
random Trust values of an arbitrary variation of Gaussian-distribution; and the ran-
dom pairs of Identity vertices which constituted them were uniformly distributed.
It is highly doubtful whether such a random graph is an equitable model of the

3.3 B E N C H M A R K 45

complexity of social interaction between real users. It does seem necessary to simu-
late a real topology as the question whether an algorithm is adequate for a certain
type of graph highly depends on the graph’s structural properties.
An attempt was made to bend the random graph model to a more natural one:

1. A tool was written to produce a histogram of the number of occurrences of
each Trust value in the allowed range of [−100, 100] [51]. Such a histogram
was generated for the existing full network dump from the previous attempt
of doing a real world benchmark. It included 200 000 Trust values, and thus
could be guessed to be significant enough. The code which generates the ran-
dom Trust graph was amended to chose Trust values to fit the distribution
shown by the histogram.

2. Inspired by a suggestion of A. Babenhauserheide in the Freenet team chat,
and similar to the previous histogram, code was written to generate a his-
togram of the outgoing Trust degree values of Identity vertexes [51]. For exam-
ple an Identity has an outgoing Trust degree of 5 if it gave five Trust values
to other Identities. The histogram counted the number of occurrences of each
degree value. Again, the random Trust graph generation code was amended
to obey the distribution which this histogram had measured.

3. After the outgoing Trust degree histogram was available, it became apparent
that A. Babenhauserheide was right: The distribution of incoming Trust de-
gree would also have to be measured and respected in random Trust graph
setup. It was decided to abort the implementation here for reasons explained
below.

At the point of having followed the two random distribution histograms, and hav-
ing decided that the code had to be amended to model a third, the random graph
setup code filled several screens already [52].
It would have taken a non-negligible amount of time to complete the code. And
then it would not yet be scientifically justified to be a valid, complete model of the
real network.
As the time for completing the thesis was running out already, it was decided to
continue with a less synthetic approach.
Nevertheless, the framework for random graph generation was preserved and
merged into the official repository. It may serve as a useful foundation for future
work to implement fully synthetic benchmarks. These will have a huge benefit
over real world benchmarks: In difference to real network dumps, the size of their
graphs can be chosen freely by redefining constants. By this, developers can chose
between:

• Short runtime of benchmarks, which can be a useful tool during development
to quickly get feedback upon whether changes are an improvement.

• Long runtime of benchmarks, which is important for getting accurate results
to evaluate performance with significant confidence.

46 R E S U LT S A N D D I S C U S S I O N

3.3.1.4 Semi-synthetic benchmark

While the real world benchmark described on page 43 did not cause a sufficient
number of distrust operations to yield a satisfactory measurement, it did still yield
a large dump of the real network:

• Discovered and downloaded Identities: 11 985.

Notice: Number of total Freenet users is ~10 000, see [7].

• Discovered but not downloaded6: 183, which is ~1.5 % of the discovered ones.

• Trusts: 222 122

• Own Identities: 1 7

Remember: We want to measure the performance of the improved incremental
Score computation algorithm. The primary input to that algorithm is the graph
where Identities are vertexes and Trusts are edges.
For that purpose, over 10 000 vertexes and 220 000 edges may in our evaluations be
considered as a strongly significant dataset. Additionally, the number of Identities
being in the order of magnitude of the total amount of Freenet users and the only
1.5% of not downloadable Identities both indicate that the dump is highly complete.
Consequently, it was decided to use this data set as a source data set for a semi-
synthetic benchmark: The data set would be real, the operations whose execution
time is to be measured would be chosen in a synthetic way.
We will now continue with choosing which the benchmarked operations will be.
Before we do so, it may be recommended to re-read the pages starting at 40. They
give a summary of the new algorithm and hint at which aspects of it should be
measured.
We will measure the performance of the new algorithm by measuring frequent ex-
ecution of an operation which was replaced by the new algorithm - once with the
new algorithm, once with the old. We now need to find such a function.
The function needs to meet several requirements:

1. It has to exist both in the old and in the new code base so the benchmark can
measure a performance improvement factor.

2. It always has to always cause new incremental Score computation to happen
as that is what we want to measure.

6 As described on page 1, Freenet will naturally drop data if it is not downloaded by anyone for some
time. Some unpopular Identities will thus not be downloadable.

7 This had to be manually chosen as own Identities are user-created. The value of 1 can be considered
as a natural choice: Freenet is a peer-to-peer network, and thus each user should install it on their
own instead of using a central service which runs Freenet. Thus, a single instance of WoT will only
have one actual user. The amount of own Identities will only grow due to the user’s privacy concerns.
In laboratory conditions such as ours, a natural choice for such a small value is 1. One might argue
that a value of 2 at least should be tried to provoke errors which do not happen upon boundaries such
as 1, but the primary purpose of this dataset is benchmarks. Correctness was tested using a different
one which included more than 1 own Identity.

3.3 B E N C H M A R K 47

3. As we learned from the real world benchmark, execution time needs to be
dominated by the execution time of the old / new algorithm, i.e. not include
any other expensive calculations.

4. The Synopsis of new incremental Score computation in the previous section
(page 40) has indicated that a benchmark for the new algorithm shall have the
goal of possibly causing rank changes, as rank changes are what increases the
iterations of the algorithm.

To fulfill these requirements, it was decided to use the deletion of an existing Trust by
removeTrust(). The requirements are met as:

1. Removal of a Trust is a core operation of WoT and has always been imple-
mented.

2. As explained on pages starting at 23, removeTrust() will always cause the new
incremental Score computation algorithm to run.

3. By studying the pseudocodes (also at the said pages) which determine
whether the old / new algorithm will run, one may also learn that it takes
O(1) in both the old and the new code to decide this. It only has to look at the
deleted Trust, not query any further Identities / Trusts / Scores. Ergo, as con-
stant offsets can be ignored in terms of Landau notation, the execution time of
removeTrust() can be seen to boil down to be dominated by the execution time
of the old / new algorithm which we want to benchmark. Thus removeTrust()
can be the function whose execution time we measure.

4. Rank values are inherited through Trust values (pages starting at 12), which
means that removing a Trust value causes the trustee to not be able to inherit
a rank value through the removed Trust anymore. This satisfies our require-
ment of possibly causing changed ranks in the benchmarked operation.

3.3 B E N C H M A R K 49

3.3.2 Benchmark results

The benchmark operated as shown by the following simplified pseudocode:

Listing 14: Benchmark to compare old and new algorithm (simplified) [53] [54]
1 Queue<Trust> trusts = randomPermutation (getAllTrusts ()) ;
2 i n t trustCount = trusts . size () ;
3
4 while (! trusts . isEmpty ()) {
5 Trust trust = trusts . removeFirst () ;
6
7 System . gc () ; // Try to exclude garbage−c o l l e c t i o n peaks
8
9 StopWatch result = new StopWatch () ;

10 removeTrust (trust) ;
11 result . stop () ;
12
13 i n t x = trustCount ;
14 Time y = result . seconds () ;
15 graph . plot (x , y) ;
16
17 trustCount−−;
18 }

Random Trust edges are removed, the time for reach removal is measured, and
plotted as y-value with the x-value being the total number of Trusts in the database.
The benchmark was executed once with the old Score computation code, once with
the new one. Both times, the same fresh copy of the initial data set was used as
input.
No user was present at the machine 8 during the time of the benchmark, and it was
disconnected from the Internet to prevent disturbance due to periodical jobs such
as automated software upgrades.
Due to time constraints of the thesis, the benchmark was aborted at an execution
time of 68 hours with the old code. While the resulting amount of ~5000 iterations
of removeTrust() could be argued to only be slightly above the lower boundary of
statistical significance, it has to be accredited that blocking the author’s workstation
for 9 hours a day for a week might be enough of effort for the time constraints of a
bachelor’s thesis.
The same number of ~5000 iterations was then repeated with the new code, which
took it a total of 3 hours only. It was chosen to not use the same number of hours
as with the old code as a similar iteration count is of more interest: It allows a
plot which shows the same amount of measurements for the old and new code.
Furthermore, the numbers at 5000 samples were already steady enough to allow
the conclusion that further samples would not reveal much more information.
For readability of the graph, a cutoff was set above ~60 seconds. Values above this
cutoff are rendered on the top frame of the graph.

8 ThinkPad T61p, 2.4 GHz Core 2 Duo processor, 8 GiB of memory, 1 GiB limit for WoT. The specific
machine is not of much relevance as our primary interest is relative speed improvement; but it may
help to understand how bad the performance was for regular users.

50
R

E
S

U
L

T
S

A
N

D
D

IS
C

U
S

S
IO

N

Figure 3.1: Benchmark results of optimized part of incremental Score computation algorithm [53] [54].
Uses a network dump of the real network - Identities: 11985 (Not fetched: 183), Trusts: 222122, Own Identities: 1.

0

10

20

30

40

50

60

217000 218000 219000 220000 221000 222000

Ti
m

e
fo

r
re

m
ov

in
g

a
si

ng
le

Tr
us

tv
al

ue
(s

ec
on

ds
)

Trust value count

Performance improvement factor (quotient of means): 22.0314

Old code (5052 Samples, Mean: 48.8555 seconds)
New code (5052 Samples, Mean: 2.21754 seconds)

4 Conclusion and Outlook

4.1 Analysis of benchmark results

As the aesthetics of the idea of reversing the UCS algorithm to gain speed already
caused a certain elation, the performance improvement factor of 22 which we just
measured may now induce euphoria.
But let us not be fooled: It shall be admitted that the huge performance improve-
ment is probably not due to incredible smartness of the new algorithm, but rather
due to the naïveté of the old algorithm. Remember: Upon removal of a Trust, the old
algorithm would just “bail out” from having to incrementally recompute Scores by
throwing away all Scores and recomputing all of them from scratch. Colloquially,
this was more of a hack than a real algorithm. Therefore, even a bad fully incremen-
tal algorithm had an easy battle.
And when looking really closely, one might even ascertain that the new algorithm
actually does the same mistake as the old algorithm, only on a smaller scale: Upon
removal of Trust edges, its core function computeRankFromScratch() (cRFS) searches
new shortest paths while completely ignoring the possibility of using old informa-
tion about preexisting paths to accelerate the search.
This has wide reaching consequences as we will learn now.

4.1.1 Deficiencies of the new algorithm

C R F S D O M I N AT E S T H E R U N T I M E O F T H E N E W A L G O R I T H M During de-
velopment, various manual measurements did in fact show that computeRankFrom-
Scratch() consumes the majority of the execution time of the new algorithm.
This is slightly visible in the benchmark plot as well: There are discrete “levels” of
execution time, which are probably equal to whether cRFS is executed 1 time, 2
times, etc.

C R F S I S U S E D V E R Y F R E Q U E N T LY If we reread the function which decides
whether it needs to run the new incremental on algorithm on page 23, we may
realize that the cases where it does so are precisely those with a high probably of
a rank path having died. As ranks are inherited, batch searches of new ranks for
neighbor Identities by calling cRFS multiple times are then very likely.

W O R S T- C A S E R U N T I M E O F C R F S U S A G E I S Q U A D R AT I C The worst case
runtime of cRFS is the runtime of the SSSP problem as explained on page 35.
SSSP for WoT can be rather large: As we learned on page 34, WoT will try to dis-
cover all world-widely existing Identities.
And even worse than that, a single iteration of the the new incremental Score com-
putation algorithm may use cRFS multiple times (page 27), and so may run into its

51

52 C O N C L U S I O N A N D O U T L O O K

worst case multiple times. The worst case here is calling cRFS for all V Identities, so
the resulting runtime is O(V ∗ t(cRFS)...) = O(V ∗ t(SSSP)...).
The worst-case runtime of cRFS being convergent to SSSP means in our case being
convergent to Dijkstra: cRFS is based on UCS, and UCS is based on Dijkstra.
This yields t(SSSP) = O(VlgV + E) [31].
Overall, we are thus at a worst-case runtime for the new incremental Score compu-
tation algorithm of O(V ∗ t(SSSP)...) = O(V2...) which is unacceptable.
This is already visible in the benchmark results on page 50: While the average exe-
cution time for the new algorithm is ~2 seconds, there is a small amount of samples
well above 60 seconds.

4.1.2 Probability of occurrence of deficiencies

While a quadratic worst-case runtime of an algorithm usually is a testimony of
a design failure, it must still be investigated whether the worst case will actually
happen in practical use of the algorithm.
And in fact, there are signs that in our case, the worst case has a low probability.
For runtime to become O(V2), the two factors V need to be contributed by:

• For every passed pair of a source OwnIdentity and target Identity, the SPSP
algorithm of cRFS needs to be unable to find a path between the source and
the target; and the walked subgraph must contain all V Identities. Hence the
“evil”, distrusted part of the social network must be all Identities.

• For every Identity reachable by the single Trust edge which changed to dis-
trust, the new algorithm needs to determine that its rank was invalidated
since it had been inherited only through the removed Trust edge (page 27).
This can be imagined to be the removal of a Trust edge towards a “king” iden-
tity, which was the only source of ranks in a hierarchy of slave-Identities be-
low it. Not a single rank-route “around” the king must have existed.

The coherence between these two requirements is the situation where a huge
“monarchy” subgraph is removed.
For this to happen in practice, a single Identity would have to be the single source
of Trust for a large web of “sybils”: Identities which do only receive Trust from it.
This should typically only happen in the situation of the “sybil attack” [55], where
an attacker creates many Identities of his own and makes them give Trust to each
other. Other than that, there is no reason for a majority of the WoT users to avoid
giving Trust to a huge subset of the community, and instead only delegate it to a
leader of the subset.
And luckily, it was a design goal of WoT to avoid the sybil attack: To create an Iden-
tity by receiving a Trust value from a remote Identity, WoT requires new users to
solve a “Completely Automated Public Turing test to tell Computers and Humans
Apart” (CAPTCHA) [9]. Thus the amount of sybil Identities has an upper bound

4.2 C O N C L U S I O N 53

by the amount of human CAPTCHA-solving workforce an attacker is capable of
investing.
The happening of the worst case in the benchmark can be explained by the fact
that the Trust values which the benchmark removes are chosen at random; and
that it keeps removing Trust values from the same graph instead of resetting it to
contain all initial Trust values. Over time, this will cause well-established Identities
to become a “king” as was described. Once the last edge to the king is removed, a
subgraph breaks off from the main WoT. This is again believable to be unlikely in
practice.

4.2 Conclusion

As we just saw, the worst case of the new algorithm running in O(V2) was overall
concluded to be improbable.
In addition, our benchmark (page 50) had showed an average execution time of ~2
seconds on an elder laptop, which from a user’s point of view is a lot more bearable
than the average execution time of ~49 seconds of the old algorithm.
From a developer’s point of view, the average performance improvement factor of
22 is definitely beyond micro-optimization, and so may be considered as sufficient
for a thesis project.
The thesis’ work has therefore been merged into the main Git tree of WoT [20–25],
and thus will definitely be included in the next WoT testing release. An extended
testing period will be recommended, so testers can provide statistics on how fre-
quently the worst case maybe does happen in practice. Logging code has been
added to allow them to determine this.
It shall be admitted, that for security considerations, it is still desirable to prevent
the worst case altogether by further algorithmic improvements.
At this thought, it can be hoped that the thesis will be completed to success by now
proceeding to provide a variety of ideas to prevent the worst case. The author is
eager to provide their implementation as future work.

54 C O N C L U S I O N A N D O U T L O O K

4.3 Ideas for future work

We shall now have a look at some of the most interesting ideas for future work
which the thesis yielded. Please notice that the following list is incomplete: There
was also a fair amount of low-level “FIXME” and “TODO” comments added to the
code, as well as bugtracker entries filed, which would be beyond scope to discuss
here.

4.3.1 Opportunistic rank computation

A fundamental property of a shortest path in a graph is that sub-paths of it are also
shortest paths.
Hence, when cRFS has computed a rank for Identity Z by discovering a shortest
path from OwnIdentity O across identities A, B, C, ... Y, the ranks of A to Y have
also been computed since the chosen paths across those Identities must also be
shortest paths. Those shortest paths might be stored in a cache, which is kept for the
duration of the incremental Score computation algorithm. It will use cRFS multiple
times, and so the opportunistically computed paths might help.
On a grand scale, this can help to prevent the O(V2) worst case of the new incre-
mental Score computation algorithm which we just discussed (pages starting at 51):
We again notice: The worst case of incremental Score computation arises from the
worst case of cRFS not finding a path happening each of the worst-case V-times the
outer algorithm calls cRFS. And the worst case of cRFS solves the SSSP problem
when it happens the first time already. So as soon as that, we have discovered a
shortest-path (of “no path exists”) for all Identities! Thus, in the subsequent V − 1

calls to cRFS which the worst-case of incremental computation will continue with,
cRFS can determine the rank from its cache in O(1).

4.3.2 Backtracking

While we just saw that there are indeed viable options to speeding up cRFS, we
could also instead just avoid its whole problems by trying to not call it whenever
possible.
Without knowledge of the new algorithm, M. Toseland had suggested the approach
of backtracking [38] in a broader sense. Albeit taken out of context here, this can be
judged to be a relevant technique nevertheless: In a space-for-time trade, we might
amend class Score to not only store the rank of an Identity, but also the Trust edge
it has inherited the rank from. In the SPSP terminology, this would be the last edge
of the shortest path to the target. When a Trust edge is removed, it could then be
decided whether the rank of the target Identity really has to be recomputed using
cRFS: If the removed Trust edge was not the provider of the rank, then the rank
does not have to be recomputed.

4.3 I D E A S F O R F U T U R E W O R K 55

This concept could be extended to storing not only the last edge in a rank-path,
but all edges in the path. While the approach of caching only the last edge would
likely only allow checking whether the first encountered rank has to be changed,
this would likely even allow checking the validity of all visited ranks when looking
at more than the first Identity which updateRanksAfterDistrust...() encounters (see
page 27).

4.3.3 Divide and conquer

The primary user-facing problem with large Score computation times currently is
not really the usage of system resources such as CPU, but rather the UI becoming
unresponsive for times more than a second.
This is due to issues with the the way the database is used and likely cannot be
fixed quickly, see [4] and the linked issues there.
The atomic unit of blocking the UI in this context is a single database transaction.
To reduce the blocking, database transactions could be split up.
And in fact, our new incremental Score computation algorithm is suitable for that:
The procedure of updating ranks (page 27), which defines the worst case runtime
(page 51), is suitable for being split up in a divide and conquer fashion.
It processes a queue of Scores for which the rank needs to be recomputed, and
currently consumes all of it in a single transaction. The queue could be kept in the
database instead of in memory. A single database transaction would then consist of
processing the single head element of the queue - instead of all of it.
Since the worst case O(V2) of new incremental Score computation is a compound
of two factors V , where one of them is a result of the Queue possibly containing V
elements, this could cut down the transaction size from O(V2) to O(V). This would
be traded off against having O(V) transactions instead of 1.
A further benefit with the divide and conquer approach may be that what was just
described is not the only place where it could be applied. There is more than one
queue processing loop in the new Score computation algorithm, and all of them
could be considered for being split into multiple transactions.

4.3.4 New class of shortest path algorithms?

If we forget about the technical details of the new algorithm for a while, and re-
member which problem it tries to solve at rank computation (page 13), we notice
that WoT has a quite compact goal there:
It wants a data structure which contains the solution to the SSSP problem upon
the graph of Identities and Trusts, and this database shall stay up to date upon
variations of the graph in steps of one changed Trust edge at once.
It is tempting to name this problem to denominate a whole new class of graph
algorithms, perhaps “Single-Source Variable Shortest-Paths” problem (SSVSP).

56 C O N C L U S I O N A N D O U T L O O K

Due to the concise nature of this problem’s definition, one may wonder whether
WoT development is really the first manifestation of this goal in the history of algo-
rithmics. It is quite imaginable that this is a fundamentally important problem in
the domain of graph algorithms, and thus a whole class of algorithms might exist
to solve it.
Hereby it shall be stated that the utmost interest of the author with regards to feed-
back from peer review is in this aspect. Information upon whether the computer
science community has already dedicated a name and a catalog of solutions to this
problem would be highly appreciated!

4.3.5 Different Score computation algorithm

As agreed when deciding the goals for this thesis, one goal was to not modify the
concept behind Score computation, i.e. keep the specification of which output it
should produce as is. Only the performance should be improved, the saneness of
the ideas which constitute Score computation was not to be questioned.
It is technically possible that the desired resulting output of Score computation as
specified by the reference implementation cannot be computed in an efficient way.
If all efforts to find a fast algorithm to compute Scores turn out to be in vain, then a
new Score computation scheme may need to be invented. For the purpose of gath-
ering different ideas about Score assignment, we will now continue with looking at
related works.

4.4 R E L AT E D W O R K S 57

4.4 Related works

The concept of a “web of trust” predates the Freenet WoT. Therefore, we have a
wide variety of trust calculation systems to chose from when considering related
works.
Let us now have a look at only some of them.

4.4.1 Freenet Message System (FMS)

FMS [56] is a forum system built on top of Freenet. It existed before WoT, and may
be considered as a predecessor which inspired the creation of WoT.
Architecturally, there is an unfortunate disadvantage of FMS: The trust system of
its own which it includes is not exposed with an API which would allow it to be the
foundation for other client applications. It will only serve FMS for its own purposes.
The specification of the trust metric of FMS [57] is rather thin. Recent discussion on
its own forums [58] seems to clarify the way it works:
It also has trust values which are averaged. However, they are not weighted by a
graph distance metric as in WoT. Instead the user assigns a special secondary trust
value called the “trust list trust” which is the weight for the trust list of remote peers
it is assigned to.
Most notably, this has a recursion depth of 1: For example, let the local user L assign
a trust list trust T1 to remote user X. If X gives a trust value T2 to an identity Y, then
the trust T2 is weighted by T1. If Y continues to give a trust T3 to another peer, that
trust is ignored as the local user L did not assign a direct trust to Y.
An anonymous user in the aforementioned discussion labeled this as “selective
moderator approach”, which seems quite fitting.
This provokes a question which the author of the thesis also asked in the discussion:
If trust values are only valid up to a depth of 1, then how does FMS ensure a high
visibility of remote users? A new user will only assign a handful of trusts, and the
remote users which the new user trusted will probably not assign trust to the full
set of all global FMS users.
The further answer of another anonymous user can be paraphrased as: The discov-
ery of users has no depth limit, they are collected from the trust lists of all users.
This behavior does sound very vulnerable to the sybil attack of creating many fake
users because the trust values which distrust a user are ignored beyond depth 1,
but the ones to create them are not. An example could be given as: An attacker
creates a “root” identity R, which trusts sybils S1...Sn of his own. With R, he solves
an introduction CAPTCHA to get a trust value of a remote user. He then publishes
spam with R, and R gets distrusted. However, as trust is not propagated beyond
depth 1, the negative trust upon R will not propagate across R’s trust edge to his
sybils S1...SN. Overall, the sybils will thus stay visible as identity discovery did
propagate across the trust edge already.

58 C O N C L U S I O N A N D O U T L O O K

Admittedly, due to the lack of a clear specification of how FMS works, this is still
very speculative information. A review of its source code should likely yield an
answer to these concerns, but was not undertaken.
Nevertheless, it can be stated that a trust depth of 1 is a quite low limit: It gives the
user a lot of choice to ignore remote trust wars, but also requires them to perform
more maintenance.

4.4.2 Less Crappy Web of Trust (LCWoT)

The choice of the name “Less Crappy Web of Trust” [59] can be hoped to be a testi-
mony for the necessity to write this thesis: It was created as an alternate, compatible
implementation of WoT with the primary goal of fixing the severe performance is-
sues - which was also the motivation of the thesis.
It was chosen to fix the regular WoT in the thesis anyway: Personal conversation
with the author determined that it is meant as a proof of concept only, not as a full
replacement. It lacks critical features such as the ability to provide CAPTCHAs.
Inspection of the current source code showed that its performance fixes are unfor-
tunately also not a solution to the incremental Score computation issues which this
thesis addressed:
There is no incremental Score computation algorithm in LCWoT [60]. It just avoids
finding a solution to this algorithmic problem by not updating Scores for every
Trust change. Instead, a full Score recomputation happens every 3 hours [61].
While this does impose a limit upon CPU usage of LCWoT, it is of course more of
procrastination than solving the actual problem.
Still, several things can be learned from LCWoT, which we may have a look at now.

4.4.2.1 Graph databases

While WoT uses the object database library “db4o”1, LCWoT uses the graph
database library “Neo4j” [62].
A graph database is specially suited for storing graphs, and hence may be of benefit
with the graph algorithms of WoT / LCWoT.
And in fact, LCWoT already uses it to ease its calculations: Instead of solving SSSP
manually for rank computation, it uses a built-in shortest path computation API of
Neo4j [63].
While this API is of course limited to the same algorithmic possibilities which a
custom implementation also is limited by, it may benefit a lot from the expertise
of programmers whose sole job is writing graph algorithms for a graph database.
Also, it could be imagined that graph databases are maybe able to cache solutions
to the SSSP problem, and update them incrementally as edges change, just as was
suggested earlier on page 55.

1 As this product has been discontinued, there is no website to add to the bibliography. db4o was open
source however, and development may thus be resumed by a different team.

4.4 R E L AT E D W O R K S 59

The fact that the company behind db4o ceased its development is an indicator to
consider changing the database which backs WoT, and a graph database should
then definitely be taken into consideration.

4.4.2.2 Finite rank depth

Similar to what FMS does (page 57), LCWoT seems to limit rank computation to a
finite depth [63].
While this seems to violate its goal of being a re-implementation of WoT, it is an
interesting approach nevertheless: We have already learned that the “six degrees
of separation theory” suggests that all humans are connected by 6 “trust” edges.
This indicates that WoT’s infinite rank computation depth very much exceeds the
necessary depth to reach all Identities.
Additionally, it is questionable whether a user would even want a depth of 6: Con-
sider real world friendships for example. If Alice trusts Bob as a friend, Bob trusts
Charlie, Charlie trusts David, David trusts Elisabeth, Elisabeth trusts Frank and
Frank trusts George - would Alice put any trust in George? Rather not.
Given the good reputation LCWoT seems to have in the Freenet community, it
might be indicated to try lower depths of rank computation in WoT, and evalu-
ate how they affect performance and visibility of remote users. Overall, it may then
be wise to find a tradeoff between FMS’ very short depth limit of 1, and the depth
of 6 which LCWoT uses. It might also be reasonable to make this a setting which
can be configured by the users.

4.4.3 OpenBazaar Web of Trust proposal

The OpenBazaar project [64] aims to implement a distributed Internet market, sim-
ilar to eBay for example, with Bitcoin [65] as a currency.
As money is involved, sellers and buyers then need to be able to find out whether
they can consider each others as trustworthy.
For these purposes, it was planned to implement a system similar to WoT [66].
Both the proposal and personal communication with the author showed that a com-
pletely different approach is to be taken:
For purposes of anonymity of the involved users, there shall be no global, public
knowledge of identities or trusts. The “is Identity X trustworthy?” question will not
be answered locally by a database query, but by sending a query to the peer-to-peer
network. Instead of revealing their knowledge of all identities and trusts, the peers
will only answer the trust-queries individually.
This approach will for sure be less intensive with regards to local resource consump-
tion as each peer does not have to download the whole identity and trust graph; and
so also does not have to process it.
However, it likely has a completely different security model as more trust is put
into immediate peers: They are used to download information about peers other
than themselves.

60 C O N C L U S I O N A N D O U T L O O K

Further, without local knowledge of the global network, it is a lot more difficult to
debug the implementation: Where WoT can answer whether its computed Scores
are correct by comparing the results of using multiple Score computation imple-
mentations, a proposed networked trust system will possibly yield different results
for every query. This is because the nature of networks is unstable, dynamic behav-
ior.
Besides that, it it is also noteworthy that the efforts OpenBazaar is conducting to
invent a peer-to-peer market system are unfortunately a duplication of work: An
isomorphism which maps a market to a forum system can easily be imagined. A
sub-forum such as “Computers / Hardware / Memory” is a product category. A
sell offer is a thread in such a forum, a buy offer is a reply to a thread.
Therefore, an existing Freenet-WoT-based forum system such as Freetalk [67] could
be used to implement a market. But instead OpenBazaar seems to be implementing
a market system from scratch, and also wants to go down the road of re-inventing
WoT.
For these reasons, efforts have been made to contact OpenBazaar and provide help
to implement OpenBazaar using Freenet technology. The team seems to be willing
to accept related code into their repository, but lacks a programmer willing to im-
plement it. Readers are encouraged to consider volunteering in this area!
With regards to OpenBazaar’s WoT proposal of a “networked” trust system, it can
be concluded that the approach is interesting, but very different. It would likely
be a full rewrite of the Freenet WoT codebase, and in the end not share much in
common. With this idea on mind, a suitable recommendation seems to be: Before
any work is invested in implementing the OpenBazaar WoT system, it should be
thoroughly scientifically studied whether it can be implemented in a secure way.
This is crucial because all users in Freenet are anonymous, and thus putting all
trust into the immediate peers when downloading results to trust queries is very
risky.

4.4 R E L AT E D W O R K S 61

4.4.4 Further related works

The time constraints of the thesis did not allow investigation of the technical de-
tails of further related systems: The author did not realize soon enough that related
works should be part of any bachelor’s thesis.
Part of the reasons for this might have been that the provided LATEX-template did
not mention that related works are a mandatory component of a bachelor’s thesis.
It shall be suggested to make related works a chapter in the standard template.
Nevertheless, for the reader’s own investigations, the following related works shall
be provided without comment:

• Advogato Trust Metric [35]. This inspired the WoT metric.

• Credence [68]. Kindly provided by A. Babenhauserheide.

• GnuPG [69]

• LOCKSS [70]. Kindly provided by A. Brinkmann.

A Bonus work

Let it please be politely requested to acknowledge the following additional pieces
of work when deciding about the grade for this thesis. While not being interest-
ing enough to have been noted as own work in the front matter, they nevertheless
constitute significantly important “backend” work.

A.1 Identity file queuing

As explained on page 43, a disk-based queue for Identity files was implemented.
It is an additional improvement of apparent performance: Previously, each Identity
file was processed on a thread of its own. As Score computation is single-threaded,
if more than one Identity file was downloaded by Freenet, the additional threads
would stall waiting for the Score lock [71].
The consequence of that used to be that possibly hundreds or even thousands of
threads stalled: Downloading Identity files from Freenet is often much faster than
processing.
This excessive thread load caused a lot of memory usage. Further, the UI would
become a lot slower: The UI thread had to compete against hundreds of threads
when trying to acquire the Score lock.
As suggested by F. Daignière, with the new Identity file disk queue, there is only a
single thread which processes Identity files [72]. This improves the apparent speed
of the UI a lot, since it only has to compete against that thread.
There also is a real performance improvement with Identity file queuing: As de-
cided in a team discussion, the disk queue was implemented to be deduplicating
[73]: When multiple editions of the Identity file of the same Identity are queued,
only the latest edition will be processed. Interestingly, this benefit will increase on
slower machines, where it is also of more use: The longer the queue takes to process,
the bigger its size, the higher the probability that multiple editions of an Identity’s
file arrive in the queue and can be deduplicated.
The correctness of the Identity file queuing code was validated in a robust way:
Not only was a disk based implementation written, but also a memory based one
[74]. For simplicity and thereby less potential for bugs, the memory-based queue
does not deduplicate.
A unit test was then written which feeds both queues with a random permutation
of the same Identity files [75]. Several threads are created to consume the queues
- the parallel execution ensures that threading issues may be triggered. The both
WoT databases which result from processing the two queue implementations are
then compared: If they are identical, it can be assumed that both queues produce
the same results. As two different implementations are unlikely to have the same
bugs, it is hoped that this tests correctness of the queue code.

63

64 B O N U S W O R K

A.2 Correctness test of new Score computation

On page 42, it was explained that a software benchmark was preferred over a math-
ematical proof for the sake of long term code maintainability. This was done be-
cause a software benchmark will continue to provide measurements even if the
implementation receives further improvements.
The same idea was applied with regards to checking correctness of the new incre-
mental Score computation code: Software-based tests can be of use for future de-
velopment. Unit tests provide a way of even automating the testing as part of the
compilation procedure.

A.2.1 Correctness test using Identity file queue

The original plan of the thesis contract was to use the aforementioned Identity file
queuing (page 63) for a correctness test: The developer would gather a network
dump using the Identity file queue’s archival capability. This dump would then be
fed into the queue of a test run with once the old and once the new Score computa-
tion code. The resulting WoT databases would be compared, and if they matched,
the new Score computation code could be assumed to produce the same results as
the old one.
This was in fact conducted for ~16 000 Identity files, albeit with a slight modifica-
tion:
As we learned in the section about the old Score computation reference implemen-
tation, it is able to recompute all Scores from scratch without relying upon any
pre-existing values (page 11). What was not mentioned yet is that the existing code
is also able to test correctness of the existing database contents: It compares the
results of its own against what was in the database.
This capability was used to write a command line tool which is able to test whether
a WoT database is correct in terms of the old Score computation reference imple-
mentation [51].
The tool was used upon the database which was produced from processing the
16000 Identity file dump, and determined all Scores to be correct.
Furthermore, the database which was a result of the benchmark of doing 5000 ran-
dom removeTrust() operations (page 42) was also tested and found to contain correct
Scores.

A.2.2 Unit tests

The existing unit tests of WoT already were quite sufficient: They conduct random
changes upon a WoT database, and use the Score computation reference implemen-
tation to check whether the Score database is correct [76]. This helped debugging a
lot.

A.3 P S E U D O C O D E 65

For being able to determine bugs in rank computation with shorter test runs, a test
was written to compare the results of the now 3 available implementations of rank
computation [77]:

• Full Score computation reference implementation (page 11)

• computeRankFromScratch() initial implementation (page 33)

• computeRankFromScratch() optimized implementation (page 37)

The test produces a random Identity / Trust graph using the pre-existing frame-
work, and calls rank computation upon all Identities in the graph. It checks whether
the three implementations yield the same results. It succeeded in multiple execu-
tions.

A.3 Pseudocode

All listings of pseudocode, both those which explain the pre-existing WoT code, and
the ones which explain new code, are strongly refurbished compared to the original
code: A lot of thought was put into how to reduce the code in size and to restructure
it for better ease of understanding. The pseudocodes can thus be considered as own
pieces of work.

A.4 Event propagation

For ease of understanding, the pseudocodes both of pre-existing and new Score
computation code were stripped from code to update the status of the objects of
WoT core classes IdentityFetcher and SubscriptionManager. It is quite a bit of effort
to correctly propagate the Score changes to those classes. The new Score computa-
tion code both ships new code to do that, and validates that the new code is correct
using existing and new unit tests.
Notably, the ability of the Score computation reference implementation to validate
the database contents (page 64) was amended to be able to validate the state of
event propagation to class IdentityFetcher [78].

B Obtaining the thesis’ source
code

The official WoT source code repository [79] is managed using Git [80].
Git uses cryptographic hashes to identify commits, and the hashes are built from
the content of the commits, and the chain of hashes of the previous commits.
Due to the hash chaining, a single hash uniquely identifies the whole state of a
repository. No file in the repository can be modified without changing the hash.
With this knowledge, it can be understood why the bibliography claims to provide
“permanent” links when linking the code: The links contain the commit hashes, and
thus the linked code cannot be changed by the author afterwards.
While the thesis document may ship with a CD-ROM to include the source code, it
is thus nevertheless safe to obtain the source code using the hash of the last commit
of the thesis:

1 git clone https :// github . com/freenet/plugin−WebOfTrust . git
2 cd plugin−WebOfTrust

3 git checkout e187b5cad6df3bcd94a59efff0447ce5d8cdc18e

The commit hash of the first commit of the thesis is
232164858736dceef9103f72de4adb229c75d100 [81], the last commit is
e187b5cad6df3bcd94a59efff0447ce5d8cdc18e [82].
The commits of the thesis can thus be viewed by:

1 # Hashes shortened f o r l i n e length . Git w i l l accept those , but please use
2 # long ones f o r more s e c u r i t y .
3 gitk 23216485~1 . . e187b5ca

A full diff can be viewed by:

1 # The "~1" t e l l s d i f f to compare a g a i n s t the l a s t commit * before * the t h e s i s
2 git diff 23216485~1 . . e187b5ca

A full diff can also be viewed online with proper syntax highlighting on Github
at [83].

67

C Statistics about the thesis’
source code

Furthermore, for your convenience, here are some numbers to measure the quantity
of work which was put into this thesis’ code.
The numbers of added (“+”) and removed (“-”) lines per file add up to:

1 $ git diff −−stat=80 23216485~1 . . e187b5ca
2
3 build . xml | 37 +−
4 src/plugins/WebOfTrust/Configuration . java | 84 +−
5 src/plugins/WebOfTrust/Identity . java | 42 +−
6 src/plugins/WebOfTrust/IdentityFetcher . java | 156 ++−
7 src/plugins/WebOfTrust/IdentityFile . java | 136 +++
8 src/plugins/WebOfTrust/IdentityFileDiskQueue . java | 514 ++++++++
9 . . . / WebOfTrust/IdentityFileMemoryQueue . java | 113 ++

10 src/plugins/WebOfTrust/IdentityFileProcessor . java | 252 ++++
11 src/plugins/WebOfTrust/IdentityFileQueue . java | 206 ++++
12 src/plugins/WebOfTrust/Persistent . java | 51 +−
13 src/plugins/WebOfTrust/Score . java | 10 +−
14 src/plugins/WebOfTrust/Trust . java | 18 +−
15 src/plugins/WebOfTrust/WebOfTrust . java | 1244 ++++++++++++++++++−−
16 src/plugins/WebOfTrust/XMLTransformer . java | 15 +−
17 . . . / exceptions/DuplicateScoreException . java | 4 +
18 . . . / exceptions/NotInTrustTreeException . java | 4 +
19 src/plugins/WebOfTrust/l10n/lang_de . l10n | 21 +
20 src/plugins/WebOfTrust/l10n/lang_en . l10n | 26 +−
21 src/plugins/WebOfTrust/l10n/lang_it . l10n | 7 +−
22 src/plugins/WebOfTrust/l10n/lang_ru . l10n | 2 −
23 src/plugins/WebOfTrust/ui/terminal/WOTUtil . java | 246 ++++
24 . . . / WebOfTrust/ui/terminal/package−info . java | 8 +
25 src/plugins/WebOfTrust/ui/web/StatisticsPage . java | 116 +−
26 src/plugins/WebOfTrust/util/Base32 . java | 169 +++
27 src/plugins/WebOfTrust/util/StopWatch . java | 44 +
28 . . . / plugins/WebOfTrust/AbstractJUnit4BaseTest . java | 20 +−
29 test/plugins/WebOfTrust/BenchmarkTest . java | 60 −
30 test/plugins/WebOfTrust/IdentityFileQueueTest . java | 227 ++++
31 test/plugins/WebOfTrust/Issue0006599 . java | 94 ++
32 test/plugins/WebOfTrust/RankComputationTest . java | 117 ++
33 . . . / WebOfTrust/ScoreComputationBenchmark . java | 848 +++++++++++++
34 . . . / WebOfTrust/ScoreRecomputationBenchmark . java | 64 +
35 . . . / WebOfTrust/SubscriptionManagerFCPTest . java | 2 +
36 test/plugins/WebOfTrust/WoTTest . java | 105 +−
37 wotutil . sh | 3 +
38 35 files changed , 4779 insertions (+) , 286 deletions (−)

The total number of commits is:

1 $ git rev−list −−count 23216485~1 . . e187b5ca
2
3 336

69

D Copyrights

Where not further noted, all figures and code in this thesis have been produced by
myself, or are based upon reading existing Freenet sources and have been extended
by myself by an amount significant enough to be considered as an own piece of
work. Content which is quoted as pre-existing, non-own work is where not further
mentioned owned by Freenet Project Inc. and licensed with the GNU General Pub-
lic License (GPL) or later versions of it [84]. The GPL inherently permits usage for
the purposes of the thesis.
Especially shall it be noted that where not further noted, all copyright of my work
is granted to Freenet Project Inc. for the purpose of unlimited publishing with any
license of their decision.

71

B I B L I O G R A P H Y

[1] Freenet Project Inc. Official website of the Freenet Project and its foundation.
https://freenetproject.org/ Loaded on 2015-07-31.

[2] Various contributors. Article about sub-projects of Freenet on the official
Freenet Project Wiki. https://wiki.freenetproject.org/index.php?title=

Projects&oldid=2817 Loaded on 2015-07-31. Permanent link to the latest revision
created on 2015-07-25. The Wiki can be considered as an official source since registra-
tion requires manually contacting the Freenet team.

[3] Various contributors. Article about Web of Trust on the official Freenet Project
Wiki. https://wiki.freenetproject.org/index.php?title=Web_of_Trust&

oldid=2569 Loaded on 2015-07-31. Permanent link to the latest revision created on
2014-05-23. The Wiki can be considered as an official source since registration requires
manually contacting the Freenet team and the article has not been edited for over a
year.

[4] Previous own work. WoT bugtracker, issue 0005748: Do not synchronize reads
of the web interface. https://bugs.freenetproject.org/view.php?id=5748

Loaded on 2015-08-10.

[5] I. Clarke. Freenet white paper. https://freenetproject.org/papers/ddisrs.
pdf Loaded on 2015-07-31, 1999.

[6] M. Toseland. Personal communication with former chief Freenet developer and em-
ployee of Freenet Project Inc.

[7] S. Dougherty. Freenet Statistics. http://localhost:

8888/SSK@pxtehd-TmfJwyNUAW2Clk4pwv7Nshyg21NNfXcqzFv4,

LTjcTWqvsq3ju6pMGe9Cqb3scvQgECG81hRdgj5WO4s,AQACAAE/statistics-

927/ Loaded on 2015-07-31. Permanent link to version of 2015-07-31. Requires
Freenet to be viewed., 2015.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition, page 594. The MIT Press, 3rd edition, 2009.

[9] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using Hard
AI Problems for Security. http://www.iacr.org/cryptodb/archive/2003/

EUROCRYPT/2005/2005.pdf Advances in Cryptology - EUROCRYPT 2003, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings. Loaded 2015-08-28., 2003.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition, page 644. The MIT Press, 3rd edition, 2009.

73

https://freenetproject.org/
https://wiki.freenetproject.org/index.php?title=Projects&oldid=2817
https://wiki.freenetproject.org/index.php?title=Projects&oldid=2817
https://wiki.freenetproject.org/index.php?title=Web_of_Trust&oldid=2569
https://wiki.freenetproject.org/index.php?title=Web_of_Trust&oldid=2569
https://bugs.freenetproject.org/view.php?id=5748
https://freenetproject.org/papers/ddisrs.pdf
https://freenetproject.org/papers/ddisrs.pdf
http://localhost:8888/SSK@pxtehd-TmfJwyNUAW2Clk4pwv7Nshyg21NNfXcqzFv4,LTjcTWqvsq3ju6pMGe9Cqb3scvQgECG81hRdgj5WO4s,AQACAAE/statistics-927/
http://localhost:8888/SSK@pxtehd-TmfJwyNUAW2Clk4pwv7Nshyg21NNfXcqzFv4,LTjcTWqvsq3ju6pMGe9Cqb3scvQgECG81hRdgj5WO4s,AQACAAE/statistics-927/
http://localhost:8888/SSK@pxtehd-TmfJwyNUAW2Clk4pwv7Nshyg21NNfXcqzFv4,LTjcTWqvsq3ju6pMGe9Cqb3scvQgECG81hRdgj5WO4s,AQACAAE/statistics-927/
http://localhost:8888/SSK@pxtehd-TmfJwyNUAW2Clk4pwv7Nshyg21NNfXcqzFv4,LTjcTWqvsq3ju6pMGe9Cqb3scvQgECG81hRdgj5WO4s,AQACAAE/statistics-927/
http://www.iacr.org/cryptodb/archive/2003/EUROCRYPT/2005/2005.pdf
http://www.iacr.org/cryptodb/archive/2003/EUROCRYPT/2005/2005.pdf

74 Bibliography

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition, page 643. The MIT Press, 3rd edition, 2009.

[12] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, pages 83–85.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[13] A. Felner. Position paper: Dijkstra’s algorithm versus uniform cost search
or a case against dijkstra’s algorithm. http://www.aaai.org/ocs/index.php/
SOCS/SOCS11/paper/view/4017/4357 Proceedings, The Fourth International Sym-
posium on Combinatorial Search (SoCS-2011). Loaded on 2015-08-22, 2011.

[14] Freenet Project Inc. Understand Freenet. https://freenetproject.org/

understand.html Loaded on 2015-08-01.

[15] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan.
Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommen-
dation, W3C - World Wide Web Consortium, September 2006.

[16] The Tor Project, Inc. Official website of the Tor project. https://www.

torproject.org/ Loaded on 2015-08-28.

[17] Freenet Project Inc. How is Freenet different to Tor? https://freenetproject.

org/faq.html#tor Freenet frequently asked questions. Loaded on 2015-08-28.

[18] Freenet Project Inc. and various contributors. Official Git repository of the
Freenet code. https://github.com/freenet Loaded on 2015-08-28. Lines of code
were computed to include Freenet and the most important WoT based sub-projects. In-
dividual numbers are: fred (= Freenet) 265004, WoT 35340, Freemail 23755, Freetalk
26270, FlogHelper 5770.

[19] Freenet Project Inc. Donations. https://freenetproject.org/donate.html

Loaded on 2015-08-26.

[20] Own work. Commit which merges part of the thesis’ work into the
main WoT Git tree. https://github.com/freenet/plugin-WebOfTrust/

commit/c3de0e0928c06bb0a4c0f7c95be7dd1dbb12e2ee Permanent link to com-
mit c3de0e0928c06bb0a4c0f7c95be7dd1dbb12e2ee.

[21] Own work. Commit which merges part of the thesis’ work into the
main WoT Git tree. https://github.com/freenet/plugin-WebOfTrust/

commit/9a96de68c1effa4413c7e938bf573385aeccfd7b Permanent link to com-
mit 9a96de68c1effa4413c7e938bf573385aeccfd7b.

[22] Own work. Commit which merges part of the thesis’ work into the
main WoT Git tree. https://github.com/freenet/plugin-WebOfTrust/

commit/1342cf8cc04ecaee55716bf501e4a840cbcc3702 Permanent link to com-
mit 1342cf8cc04ecaee55716bf501e4a840cbcc3702.

http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4017/4357
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4017/4357
https://freenetproject.org/understand.html
https://freenetproject.org/understand.html
https://www.torproject.org/
https://www.torproject.org/
https://freenetproject.org/faq.html#tor
https://freenetproject.org/faq.html#tor
https://github.com/freenet
https://freenetproject.org/donate.html
https://github.com/freenet/plugin-WebOfTrust/commit/c3de0e0928c06bb0a4c0f7c95be7dd1dbb12e2ee
https://github.com/freenet/plugin-WebOfTrust/commit/c3de0e0928c06bb0a4c0f7c95be7dd1dbb12e2ee
https://github.com/freenet/plugin-WebOfTrust/commit/9a96de68c1effa4413c7e938bf573385aeccfd7b
https://github.com/freenet/plugin-WebOfTrust/commit/9a96de68c1effa4413c7e938bf573385aeccfd7b
https://github.com/freenet/plugin-WebOfTrust/commit/1342cf8cc04ecaee55716bf501e4a840cbcc3702
https://github.com/freenet/plugin-WebOfTrust/commit/1342cf8cc04ecaee55716bf501e4a840cbcc3702

Bibliography 75

[23] Own work. Commit which merges part of the thesis’ work into the
main WoT Git tree. https://github.com/freenet/plugin-WebOfTrust/

commit/52cfa5e27a22845557da3151fa16c2071836f6a3 Permanent link to com-
mit 52cfa5e27a22845557da3151fa16c2071836f6a3.

[24] Own work. Commit which merges part of the thesis’ work into the
main WoT Git tree. https://github.com/freenet/plugin-WebOfTrust/

commit/f25fe3c0286e4031def04514006ac6e6708825de Permanent link to com-
mit f25fe3c0286e4031def04514006ac6e6708825de.

[25] Own work. Commit which merges part of the thesis’ work into the
main WoT Git tree. https://github.com/freenet/plugin-WebOfTrust/

commit/50c0d203f7ada86341dc1bfee673e54a42ed9425 Permanent link to com-
mit 50c0d203f7ada86341dc1bfee673e54a42ed9425.

[26] Freenet Project Inc., Various contributors. Source code of Freenet before the-
sis. https://github.com/freenet/fred/tree/build01468 Permanent link to
version "build01468". While this commit happened after the begin date of this thesis,
it is the earliest official stable release which the used development branches of WoT will
compile against. In other words, the development branch of WoT required code which
had not been released in a Freenet version before build01468.

[27] Freenet Project Inc., Various contributors. Source code of WoT be-
fore thesis. https://github.com/freenet/plugin-WebOfTrust/tree/

7c254bd62c6940da402e7788fe01ec84d07da539 Permanent link to commit
7c254bd62c6940da402e7788fe01ec84d07da539. While this commit happened after
the begin date of this thesis, it does not include any work from it.

[28] Freenet Project Inc., Various contributors. Core classes
of WoT. https://github.com/freenet/plugin-WebOfTrust/

tree/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/

WebOfTrust Permanent link to latest commit before thesis
(7c254bd62c6940da402e7788fe01ec84d07da539).

[29] Freenet Project Inc., Various contributors. Reference implementation of Score
computation algorithm. https://github.com/freenet/plugin-WebOfTrust/

blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/

WebOfTrust/WebOfTrust.java#L1436 Permanent link to WebOfTrust.java, line
1436, of latest commit before thesis (7c254bd62c6940da402e7788fe01ec84d07da539).

[30] Freenet Project Inc., Various contributors. Rank computation reference
implementation. https://github.com/freenet/plugin-WebOfTrust/blob/

7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/

WebOfTrust.java#L1475 Permanent link to WebOfTrust.java, line 1475, of latest
commit before thesis (7c254bd62c6940da402e7788fe01ec84d07da539).

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition, page 658. The MIT Press, 3rd edition, 2009.

https://github.com/freenet/plugin-WebOfTrust/commit/52cfa5e27a22845557da3151fa16c2071836f6a3
https://github.com/freenet/plugin-WebOfTrust/commit/52cfa5e27a22845557da3151fa16c2071836f6a3
https://github.com/freenet/plugin-WebOfTrust/commit/f25fe3c0286e4031def04514006ac6e6708825de
https://github.com/freenet/plugin-WebOfTrust/commit/f25fe3c0286e4031def04514006ac6e6708825de
https://github.com/freenet/plugin-WebOfTrust/commit/50c0d203f7ada86341dc1bfee673e54a42ed9425
https://github.com/freenet/plugin-WebOfTrust/commit/50c0d203f7ada86341dc1bfee673e54a42ed9425
https://github.com/freenet/fred/tree/build01468
https://github.com/freenet/plugin-WebOfTrust/tree/7c254bd62c6940da402e7788fe01ec84d07da539
https://github.com/freenet/plugin-WebOfTrust/tree/7c254bd62c6940da402e7788fe01ec84d07da539
https://github.com/freenet/plugin-WebOfTrust/tree/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust
https://github.com/freenet/plugin-WebOfTrust/tree/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust
https://github.com/freenet/plugin-WebOfTrust/tree/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1436
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1436
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1436
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1475
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1475
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1475

76 Bibliography

[32] Various contributors. WoT bugtracker, issue 0005758: Profile and op-
timize computeAllScoresWithoutCommit. https://bugs.freenetproject.

org/view.php?id=5758 Loaded on 2015-08-31.

[33] Freenet Project Inc., Various contributors. Capacity computation reference
implementation. https://github.com/freenet/plugin-WebOfTrust/blob/

7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/

WebOfTrust.java#L1398 Permanent link to WebOfTrust.java, line 1398, of latest
commit before thesis (7c254bd62c6940da402e7788fe01ec84d07da539).

[34] Various contributors. Article about the "Six degrees of separation theory" on
Wikipedia. https://en.wikipedia.org/w/index.php?title=Six_degrees_

of_separation&oldid=672713170 Loaded on 2015-08-05. Permanent link to the
latest revision created on 2015-07-25.

[35] Advogato. Advogato’s Trust Metric. http://www.advogato.org/trust-

metric.html Loaded on 2015-08-05.

[36] Freenet Project Inc., Various contributors. Score value computation reference
implementation. https://github.com/freenet/plugin-WebOfTrust/blob/

7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/

WebOfTrust.java#L1567 Permanent link to WebOfTrust.java, line 1567, of latest
commit before thesis (7c254bd62c6940da402e7788fe01ec84d07da539).

[37] Freenet Project Inc., Various contributors. Old incremental Score computa-
tion algorithm. https://github.com/freenet/plugin-WebOfTrust/blob/

7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/

WebOfTrust.java#L2967 Permanent link to WebOfTrust.java, line 2967, of latest
commit before thesis (7c254bd62c6940da402e7788fe01ec84d07da539).

[38] Various contributors. WoT bugtracker, issue 0005757: Get rid of us-
ing computeAllScoresWithoutCommit whereever possible. https://bugs.

freenetproject.org/view.php?id=5757 Loaded on 2015-08-10.

[39] Own work. Refactored old incremental Score computation to call
new algorithm. https://github.com/freenet/plugin-WebOfTrust/

commit/44f4eba633aaef1735015f9739769d31766fa260 Permanent link
to WebOfTrust.java diff of the commit which added the relevant code
(44f4eba633aaef1735015f9739769d31766fa260).

[40] Own work. New optimized incremental Score computation algo-
rithm core. https://github.com/freenet/plugin-WebOfTrust/blob/

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/

WebOfTrust.java#L3822 Permanent link to WebOfTrust.java line 3822 as of last
commit of the thesis (e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[41] Own work. New optimized incremental Score computation algorithm: updat-
eRanksAfterDistrust...(). https://github.com/freenet/plugin-WebOfTrust/

https://bugs.freenetproject.org/view.php?id=5758
https://bugs.freenetproject.org/view.php?id=5758
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1398
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1398
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1398
https://en.wikipedia.org/w/index.php?title=Six_degrees_of_separation&oldid=672713170
https://en.wikipedia.org/w/index.php?title=Six_degrees_of_separation&oldid=672713170
http://www.advogato.org/trust-metric.html
http://www.advogato.org/trust-metric.html
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1567
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1567
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L1567
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L2967
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L2967
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/src/plugins/WebOfTrust/WebOfTrust.java#L2967
https://bugs.freenetproject.org/view.php?id=5757
https://bugs.freenetproject.org/view.php?id=5757
https://github.com/freenet/plugin-WebOfTrust/commit/44f4eba633aaef1735015f9739769d31766fa260
https://github.com/freenet/plugin-WebOfTrust/commit/44f4eba633aaef1735015f9739769d31766fa260
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3822
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3822
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3822
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4012
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4012

Bibliography 77

blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/

WebOfTrust/WebOfTrust.java#L4012 Permanent link to WebOfTrust.java line
4012 as of last commit of the thesis (e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[42] Own work. New optimized incremental Score computation algorithm: up-
dateCapacitiesAfterDistrust...(). https://github.com/freenet/plugin-

WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/

src/plugins/WebOfTrust/WebOfTrust.java#L4131 Permanent link
to WebOfTrust.java line 4131 as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[43] Own work. New optimized incremental Score computation algorithm: updat-
eValuesAfterDistrust...(). https://github.com/freenet/plugin-WebOfTrust/
blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/

WebOfTrust/WebOfTrust.java#L3845 Permanent link to WebOfTrust.java line
3845 as of last commit of the thesis (e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).
Notice: The linked code was not actually extracted into a function called "updateVal-
uesAfterDistrust...()" yet. For ease of understanding, the simplified pseudocode in the
thesis refers to it with that function name already.

[44] Own work. New optimized incremental Score computation algorithm:
computeRankFromScratch() initial version. https://github.com/freenet/

plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/

src/plugins/WebOfTrust/WebOfTrust.java#L3087 Permanent link
to WebOfTrust.java line 3087 as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[45] Own work. New optimized incremental Score computation algorithm: com-
puteRankFromScratch() optimized version. https://github.com/freenet/

plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/

src/plugins/WebOfTrust/WebOfTrust.java#L3188 Permanent link
to WebOfTrust.java line 3188 as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[46] Own work. "Identity file queuing" UI for viewing total process-
ing time. https://github.com/freenet/plugin-WebOfTrust/commit/

afd2b7a7747bc7eb079bcc2c44a25a26fb5bd52b Permanent link to commit
afd2b7a7747bc7eb079bcc2c44a25a26fb5bd52b.

[47] Own work. "Identity file queuing" main merge com-
mit. https://github.com/freenet/plugin-WebOfTrust/commit/

78aed8120960d76abf2a81d8419eeac1692848dd Permanent link to commit
78aed8120960d76abf2a81d8419eeac1692848dd.

[48] Own work. "Identity file queuing" file archiving
code. https://github.com/freenet/plugin-WebOfTrust/

commit/78aed8120960d76abf2a81d8419eeac1692848dd#

https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4012
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4012
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4012
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4131
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4131
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L4131
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3845
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3845
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3845
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3087
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3087
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3087
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3188
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3188
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/WebOfTrust.java#L3188
https://github.com/freenet/plugin-WebOfTrust/commit/afd2b7a7747bc7eb079bcc2c44a25a26fb5bd52b
https://github.com/freenet/plugin-WebOfTrust/commit/afd2b7a7747bc7eb079bcc2c44a25a26fb5bd52b
https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd
https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd
https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd#diff-a30abe4587257da1fa192cd8cf250aafR36
https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd#diff-a30abe4587257da1fa192cd8cf250aafR36
https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd#diff-a30abe4587257da1fa192cd8cf250aafR36

78 Bibliography

diff-a30abe4587257da1fa192cd8cf250aafR36 Perma-
nent link IdentityFileDiskQueue.java line 36 of commit
78aed8120960d76abf2a81d8419eeac1692848dd.

[49] Own work. "Identity file queuing" deterministic repeat merge
commit. https://github.com/freenet/plugin-WebOfTrust/commit/

a2f33fe65ebc34a343eaaf9ac6ac306165cc889c Permanent link to commit
a2f33fe65ebc34a343eaaf9ac6ac306165cc889c.

[50] Own work, Pre-existing library functions. Synthetic benchmark for Score
computation. https://github.com/freenet/plugin-WebOfTrust/blob/

4d81d13de1786c913e019038d47252962168b96e/test/plugins/WebOfTrust/

ScoreComputationBenchmark.java Permanent link to ScoreComputationBench-
mark.java initial draft (commit 4d81d13de1786c913e019038d47252962168b96e).

[51] Own work. Command-line tool for analyzing WoT
databases. https://github.com/freenet/plugin-WebOfTrust/blob/

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/

ui/terminal/WOTUtil.java Permanent link to WOTUtil.java as of last commit of
the thesis (e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[52] Own work. Synthetic benchmark for Score computa-
tion. https://github.com/freenet/plugin-WebOfTrust/blob/

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/

WebOfTrust/ScoreComputationBenchmark.java Permanent link to
ScoreComputationBenchmark.java as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[53] Own work. Benchmark for old Score computation
code. https://github.com/freenet/plugin-WebOfTrust/blob/

3edbad7a7061e0a03c9bf361e1e80b2a03440c79/src/plugins/WebOfTrust/

util/WOTUtil.java Permanent link to WOTUtil.java commit used
for benchmarking the old, pre-thesis Score computation code (3ed-
bad7a7061e0a03c9bf361e1e80b2a03440c79).

[54] Own work. Benchmark for new Score computation
code. https://github.com/freenet/plugin-WebOfTrust/blob/

2b035587e3b7086ba8417d25770c6afe49b4d9c8/src/plugins/

WebOfTrust/util/WOTUtil.java Permanent link to WOTUtil.java
commit used for benchmarking the new Score computation code
(2b035587e3b7086ba8417d25770c6afe49b4d9c8).

[55] J. R. Douceur. The sybil attack. http://research.microsoft.com/apps/pubs/
default.aspx?id=74220 Proceedings of 1st International Workshop on Peer-to-Peer
Systems (IPTPS). Loaded on 2015-08-28., 2002.

https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd#diff-a30abe4587257da1fa192cd8cf250aafR36
https://github.com/freenet/plugin-WebOfTrust/commit/78aed8120960d76abf2a81d8419eeac1692848dd#diff-a30abe4587257da1fa192cd8cf250aafR36
https://github.com/freenet/plugin-WebOfTrust/commit/a2f33fe65ebc34a343eaaf9ac6ac306165cc889c
https://github.com/freenet/plugin-WebOfTrust/commit/a2f33fe65ebc34a343eaaf9ac6ac306165cc889c
https://github.com/freenet/plugin-WebOfTrust/blob/4d81d13de1786c913e019038d47252962168b96e/test/plugins/WebOfTrust/ScoreComputationBenchmark.java
https://github.com/freenet/plugin-WebOfTrust/blob/4d81d13de1786c913e019038d47252962168b96e/test/plugins/WebOfTrust/ScoreComputationBenchmark.java
https://github.com/freenet/plugin-WebOfTrust/blob/4d81d13de1786c913e019038d47252962168b96e/test/plugins/WebOfTrust/ScoreComputationBenchmark.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/ui/terminal/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/ui/terminal/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/ui/terminal/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/ScoreComputationBenchmark.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/ScoreComputationBenchmark.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/ScoreComputationBenchmark.java
https://github.com/freenet/plugin-WebOfTrust/blob/3edbad7a7061e0a03c9bf361e1e80b2a03440c79/src/plugins/WebOfTrust/util/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/3edbad7a7061e0a03c9bf361e1e80b2a03440c79/src/plugins/WebOfTrust/util/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/3edbad7a7061e0a03c9bf361e1e80b2a03440c79/src/plugins/WebOfTrust/util/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/2b035587e3b7086ba8417d25770c6afe49b4d9c8/src/plugins/WebOfTrust/util/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/2b035587e3b7086ba8417d25770c6afe49b4d9c8/src/plugins/WebOfTrust/util/WOTUtil.java
https://github.com/freenet/plugin-WebOfTrust/blob/2b035587e3b7086ba8417d25770c6afe49b4d9c8/src/plugins/WebOfTrust/util/WOTUtil.java
http://research.microsoft.com/apps/pubs/default.aspx?id=74220
http://research.microsoft.com/apps/pubs/default.aspx?id=74220

Bibliography 79

[56] An anonymous user with the pseudonym "SomeDude". Freenet Message
System. http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-

6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,

AQACAAE/fms-143/ Loaded on 2015-08-29. Permanent link to version of 2015-
08-29. Requires Freenet to be viewed.

[57] An anonymous user with the pseudonym "SomeDude". FMS Trust
System. http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-

6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,

AQACAAE/fms-143/trust.htm Loaded on 2015-08-29. Permanent link to ver-
sion of 2015-08-29. Requires Freenet to be viewed.

[58] Various anonymous users. Discussion about FMS
trust metric. http://localhost:8080/forumviewthread.

htm?messageuuid=6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@

dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY#6EF3D2A9-9D22-42BC-

A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY Loaded
on 2015-08-30. Permanent link a forum thread reply on FMS. Requires Freenet and
FMS to be viewed.

[59] Thomas Markus. Less Crappy Web of Trust. https://github.com/tmarkus/

LessCrappyWebOfTrust Loaded on 2015-08-30.

[60] Thomas Markus. Less Crappy Web of Trust - ScoreCom-
puter. https://github.com/tmarkus/LessCrappyWebOfTrust/blob/

e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/

WebOfTrust/ScoreComputer.java Permanent link to ScoreComputer.java of
commit e643966f11dac2afebb87afffb4ba11f724ce1c8. Loaded on 2015-08-30.

[61] Thomas Markus. Less Crappy Web of Trust - RequestSched-
uler. https://github.com/tmarkus/LessCrappyWebOfTrust/blob/

e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/

WebOfTrust/RequestScheduler.java#L309 Permanent link to RequestSched-
uler.java line 309 of commit e643966f11dac2afebb87afffb4ba11f724ce1c8. Loaded on
2015-08-30.

[62] Neo Technology, Inc. Neo4j. http://neo4j.com/ Loaded on 2015-08-31.

[63] Thomas Markus. Less Crappy Web of Trust - ScoreCom-
puter. https://github.com/tmarkus/LessCrappyWebOfTrust/blob/

e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/

WebOfTrust/ScoreComputer.java#L130 Permanent link to ScoreComputer.java
line 130 of commit e643966f11dac2afebb87afffb4ba11f724ce1c8. Loaded on 2015-08-
30.

[64] Various contributors. OpenBazaar. https://openbazaar.org/ Loaded on 2015-
08-30.

http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,AQACAAE/fms-143/
http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,AQACAAE/fms-143/
http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,AQACAAE/fms-143/
http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,AQACAAE/fms-143/trust.htm
http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,AQACAAE/fms-143/trust.htm
http://localhost:8888/SSK@0npnMrqZNKRCRoGojZV93UNHCMN-6UU3rRSAmP6jNLE,~BG-edFtdCC1cSH4O3BWdeIYa8Sw5DfyrSV-TKdO5ec,AQACAAE/fms-143/trust.htm
http://localhost:8080/forumviewthread.htm?messageuuid=6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY#6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY
http://localhost:8080/forumviewthread.htm?messageuuid=6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY#6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY
http://localhost:8080/forumviewthread.htm?messageuuid=6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY#6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY
http://localhost:8080/forumviewthread.htm?messageuuid=6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY#6EF3D2A9-9D22-42BC-A1A0-42B7A179B702@dt2mOS7KiAJt8gNInlKxU13zImWDoAOU6KaKswzNtY
https://github.com/tmarkus/LessCrappyWebOfTrust
https://github.com/tmarkus/LessCrappyWebOfTrust
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/ScoreComputer.java
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/ScoreComputer.java
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/ScoreComputer.java
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/RequestScheduler.java#L309
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/RequestScheduler.java#L309
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/RequestScheduler.java#L309
http://neo4j.com/
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/ScoreComputer.java#L130
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/ScoreComputer.java#L130
https://github.com/tmarkus/LessCrappyWebOfTrust/blob/e643966f11dac2afebb87afffb4ba11f724ce1c8/src/main/java/plugins/WebOfTrust/ScoreComputer.java#L130
https://openbazaar.org/

80 Bibliography

[65] Bitcoin Foundation. Bitcoin - Open source P2P money. https://bitcoin.org/
Loaded on 2015-08-31.

[66] Dionysis Zindros. A pseudonymous trust system for a decentral-
ized anonymous marketplace. https://gist.github.com/dionyziz/

e3b296861175e0ebea4b Loaded on 2015-08-30.

[67] Freenet Project Inc., Various contributors. Freetalk. https://github.com/

freenet/plugin-Freetalk-staging Loaded on 2015-08-30.

[68] K. Walsh and E. G. Sirer. Credence: Thwarting P2P Pollution. http://

credence-p2p.org/ Loaded on 2015-08-30.

[69] Various contributors. GnuPG. https://www.gnupg.org/ Loaded on 2015-08-31.

[70] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, and M. Baker. The
LOCKSS peer-to-peer digital preservation system. ACM Trans. Comput. Syst.,
23(1):2–50, 2005.

[71] Various contributors. WoT bugtracker, issue 0006244: Queue fetched trust lists
instead of processing them immediately. https://bugs.freenetproject.org/
view.php?id=6244 Loaded on 2015-08-10.

[72] Own work. "Identity file queuing" processing thread.
https://github.com/freenet/plugin-WebOfTrust/blob/

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/

IdentityFileProcessor.java Permanent link to IdentityFileProcessor.java as of
last commit of the thesis (e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[73] Own work. "Identity file queuing" deduplication code.
https://github.com/freenet/plugin-WebOfTrust/blob/

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/

IdentityFileDiskQueue.java#L265 Permanent link IdentityFileDiskQueue.java
line 265 of commit e187b5cad6df3bcd94a59efff0447ce5d8cdc18e.

[74] Own work. "Identity file queuing" alternate memory-based im-
plementation. https://github.com/freenet/plugin-WebOfTrust/

blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/

WebOfTrust/IdentityFileMemoryQueue.java Permanent link to
IdentityFileMemoryQueue.java as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[75] Own work. "Identity file queuing" unit test. https://github.com/freenet/

plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/

test/plugins/WebOfTrust/IdentityFileQueueTest.java Perma-
nent link to IdentityFileQueueTest.java as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

https://bitcoin.org/
https://gist.github.com/dionyziz/e3b296861175e0ebea4b
https://gist.github.com/dionyziz/e3b296861175e0ebea4b
https://github.com/freenet/plugin-Freetalk-staging
https://github.com/freenet/plugin-Freetalk-staging
http://credence-p2p.org/
http://credence-p2p.org/
https://www.gnupg.org/
https://bugs.freenetproject.org/view.php?id=6244
https://bugs.freenetproject.org/view.php?id=6244
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileProcessor.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileProcessor.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileProcessor.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileDiskQueue.java#L265
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileDiskQueue.java#L265
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileDiskQueue.java#L265
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileMemoryQueue.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileMemoryQueue.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/src/plugins/WebOfTrust/IdentityFileMemoryQueue.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/IdentityFileQueueTest.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/IdentityFileQueueTest.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/IdentityFileQueueTest.java

Bibliography 81

[76] Freenet Project Inc., Various contributors. Part of pre-existing
unit tests which implicitly tests Score computation using random
WoT operations. https://github.com/freenet/plugin-WebOfTrust/

blob/7c254bd62c6940da402e7788fe01ec84d07da539/test/plugins/

WebOfTrust/SubscriptionManagerFCPTest.java#L250 Permanent link
to SubscriptionManagerFCPTest.java, line 250, of latest commit before thesis
(7c254bd62c6940da402e7788fe01ec84d07da539).

[77] Own work. Unit test for rank computation. https://github.com/freenet/

plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/

test/plugins/WebOfTrust/RankComputationTest.java Permanent
link to RankComputationTest.java as of last commit of the thesis
(e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[78] Own work. Improved implementation of full Score recomputation:
IdentityFetcher state validation. https://github.com/freenet/plugin-

WebOfTrust/commit/84277c50c3851446dff6ac89c6223014f711f459 Perma-
nent link to commit 84277c50c3851446dff6ac89c6223014f711f459.

[79] Freenet Project Inc., Various contributors. Official WoT source code repository.
https://github.com/freenet/plugin-WebOfTrust Loaded on 2015-08-30.

[80] Various contributors. Git. https://git-scm.com/ Loaded on 2015-08-30.

[81] Own work. First commit of this thesis’ source code.
https://github.com/freenet/plugin-WebOfTrust/tree/

232164858736dceef9103f72de4adb229c75d100 Permanent link to commit
232164858736dceef9103f72de4adb229c75d100.

[82] Own work. Last commit of this thesis’ source code.
https://github.com/freenet/plugin-WebOfTrust/tree/

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e Permanent link to commit
e187b5cad6df3bcd94a59efff0447ce5d8cdc18e.

[83] Own work, Freenet Project Inc., Various contributors. Full diff
of the thesis’ source code. https://github.com/freenet/plugin-

WebOfTrust/compare/7c254bd62c6940da402e7788fe01ec84d07da539...

e187b5cad6df3bcd94a59efff0447ce5d8cdc18e#files_bucket Permanent
link to compare the WoT code as of last commit before the thesis to the
last commit of the thesis (7c254bd62c6940da402e7788fe01ec84d07da539 and
e187b5cad6df3bcd94a59efff0447ce5d8cdc18e).

[84] Free Software Foundation. GNU General Public License, version 2. http:

//www.gnu.org/licenses/old-licenses/gpl-2.0.html Loaded on 2015-07-31.,
1991.

https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/test/plugins/WebOfTrust/SubscriptionManagerFCPTest.java#L250
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/test/plugins/WebOfTrust/SubscriptionManagerFCPTest.java#L250
https://github.com/freenet/plugin-WebOfTrust/blob/7c254bd62c6940da402e7788fe01ec84d07da539/test/plugins/WebOfTrust/SubscriptionManagerFCPTest.java#L250
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/RankComputationTest.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/RankComputationTest.java
https://github.com/freenet/plugin-WebOfTrust/blob/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e/test/plugins/WebOfTrust/RankComputationTest.java
https://github.com/freenet/plugin-WebOfTrust/commit/84277c50c3851446dff6ac89c6223014f711f459
https://github.com/freenet/plugin-WebOfTrust/commit/84277c50c3851446dff6ac89c6223014f711f459
https://github.com/freenet/plugin-WebOfTrust
https://git-scm.com/
https://github.com/freenet/plugin-WebOfTrust/tree/232164858736dceef9103f72de4adb229c75d100
https://github.com/freenet/plugin-WebOfTrust/tree/232164858736dceef9103f72de4adb229c75d100
https://github.com/freenet/plugin-WebOfTrust/tree/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e
https://github.com/freenet/plugin-WebOfTrust/tree/e187b5cad6df3bcd94a59efff0447ce5d8cdc18e
https://github.com/freenet/plugin-WebOfTrust/compare/7c254bd62c6940da402e7788fe01ec84d07da539...e187b5cad6df3bcd94a59efff0447ce5d8cdc18e#files_bucket
https://github.com/freenet/plugin-WebOfTrust/compare/7c254bd62c6940da402e7788fe01ec84d07da539...e187b5cad6df3bcd94a59efff0447ce5d8cdc18e#files_bucket
https://github.com/freenet/plugin-WebOfTrust/compare/7c254bd62c6940da402e7788fe01ec84d07da539...e187b5cad6df3bcd94a59efff0447ce5d8cdc18e#files_bucket
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Abstract
	German Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Pseudocode
	Introduction
	What is Freenet?
	Freenet's primary goal: Prevention of censorship
	Self-adjusting redundancy
	Address and data types in Freenet
	Freenet in numbers

	What is Web of Trust?
	The spam problem in anonymous networks
	Web of Trust as a distributed, collaborative spam filter

	The aim of this thesis

	Theoretical Background
	The data model of Web of Trust
	The Score computation algorithm
	Reference implementation: Full recomputation from scratch
	Incremental Score computation upon Trust change

	Results and Discussion
	Presuppositions of the optimized incremental Score computation
	The optimized incremental Score computation algorithm
	Updating Score ranks
	Updating Score capacities
	Updating Score values
	Choice and optimization of SPSP algorithm to fit structural properties of WoT graph
	Synopsis of new incremental Score computation

	Benchmark
	Choice of benchmark
	Benchmark results

	Conclusion and Outlook
	Analysis of benchmark results
	Deficiencies of the new algorithm
	Probability of occurrence of deficiencies

	Conclusion
	Ideas for future work
	Opportunistic rank computation
	Backtracking
	Divide and conquer
	New class of shortest path algorithms?
	Different Score computation algorithm

	Related works
	Freenet Message System (FMS)
	Less Crappy Web of Trust (LCWoT)
	OpenBazaar Web of Trust proposal
	Further related works

	Bonus work
	Identity file queuing
	Correctness test of new Score computation
	Correctness test using Identity file queue
	Unit tests

	Pseudocode
	Event propagation

	Obtaining the thesis' source code
	Statistics about the thesis' source code
	Copyrights
	Bibliography

