
Mesh Messaging in Large-Scale Protests:
Breaking Bridgefy

Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková(B)

Royal Holloway, University of London, London, UK
{martin.albrecht,jorge.blascoalis,rikke.jensen,lenka.marekova}@rhul.ac.uk

Abstract. Mesh messaging applications allow users in relative proxim-
ity to communicate without the Internet. The most viable offering in this
space, Bridgefy, has recently seen increased uptake in areas experiencing
large-scale protests (HongKong, India, Iran,US, Zimbabwe,Belarus), sug-
gesting its use in these protests. It is also being promoted as a communi-
cation tool for use in such situations by its developers and others. In this
work, we report on a security analysis of Bridgefy. Our results show that
Bridgefy, as analysed, permitted its users to be tracked, offered no authen-
ticity, no effective confidentiality protections and lacked resilience against
adversarially crafted messages. We verified these vulnerabilities by demon-
strating a series of practical attacks on Bridgefy. Thus, if protesters relied
on Bridgefy, an adversary could produce social graphs about them, read
their messages, impersonate anyone to anyone and shut down the entire
network with a single maliciously crafted message.

Keywords: Mesh messaging · Bridgefy · Security analysis

1 Introduction

Mesh messaging applications rely on wireless technologies such as Bluetooth Low
Energy (BLE) to create communication networks that do not require Internet
connectivity. These can be useful in scenarios where the cellular network may
simply be overloaded, e.g. during mass gatherings, or when governments impose
restrictions on Internet usage, up to a full blackout, to suppress civil unrest.
While the functionality requirements of such networks may be the same in both
of these scenarios – delivering messages from A to B – the security requirements
for their users change dramatically.

In September 2019, Forbes reported “Hong Kong Protestors Using Mesh
Messaging App China Can’t Block: Usage Up 3685%” [45] in reference to an
increase in downloads of a mesh messaging application, Bridgefy [1], in Hong
Kong. Bridgefy is both an application and a platform for developers to create
their own mesh network applications.1 It uses BLE or Bluetooth Classic and
is designed for use cases such as “music festivals, sports stadiums, rural com-
munities, natural disasters, traveling abroad”, as given by its Google Play store
1 As we discuss in Sect. 2.4, alternatives to Bridgefy are scarce, making it the predom-

inant example of such an application/framework.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 375–398, 2021.
https://doi.org/10.1007/978-3-030-75539-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_16

376 M. R. Albrecht et al.

description [20]. Other use cases mentioned on its webpage are ad distribution
(including “before/during/after natural disasters” to “capitalize on those mar-
kets before anybody else” [1]) and turn-based games. The Bridgefy application
has crossed 1.7 million downloads as of August 2020 [57].

Though it was advertised as “safe” [20] and “private” [18] and its creators
claimed it was secured by end-to-end encryption [45,51,67], none of the afore-
mentioned use cases can be considered as taking place in adversarial environ-
ments, such as situations of civil unrest where attempts to subvert the appli-
cation’s security are not merely possible, but to be expected, and where such
attacks can have harsh consequences for its users. Despite this, the Bridgefy
developers advertised the application for such scenarios [45,71,73,74] and media
reports suggest the application is indeed relied upon.

Hong Kong. International news reports of Bridgefy being used in anti-extradition
law protests in Hong Kong began around September 2019 [17,45,59,81], report-
ing a spike in downloads that was attributed to slow mobile Internet speeds
caused by mass gatherings of protesters [22]. Around the same time, Bridgefy’s
CEO reported more than 60,000 installations of the application in a period of
seven days, mostly from Hong Kong [59]. However, a Hong Kong based report
available in English [15] gave a mixed evaluation of these claims: in the midst of
a demonstration, not many protesters appeared to be using Bridgefy. The same
report also attributes the spike in Bridgefy downloads to a DDoS attack against
other popular communication means used in these protests: Telegram and the
Reddit-like forum LIHKG.

India. The next reports to appear centred on the Citizenship Amendment Act
protests in India [10] that occurred in December 2019. Here the rise in downloads
was attributed to an Internet shutdown occurring during the same period [47,63].
It appears that the media narrative about Bridgefy’s use in Hong Kong might
have had an effect: “So, Mascarenhas and 15 organisers of the street protest
decided to take a leaf out of the Hong Kong protesters’ book and downloaded
the Bridgefy app” [54]. The Bridgefy developers reported continued adoption in
summer 2020 [75].

Iran. While press reports from Iran remain scarce, there is evidence to suggest
that some people are trying to use Bridgefy during Internet shutdowns and
restrictions: the rise of customer support queries coming from Iran and a claim
by the Bridgefy CEO that it is being distributed via USB devices [48].

Lebanon. Bridgefy now appears among recommended applications to use during
an Internet shutdown, e.g. in the list compiled by a Lebanese NGO during the
October 2019 Lebanon protests [62]. A media report suggests adoption [67].

US. The Bridgefy developers reported uptake of Bridgefy during the Black Lives
Matter protests across the US [74,76]. It is promoted for use in these protests
by the developers and others on social media [68,69,74].

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 377

Zimbabwe. Media and social media reports advertised Bridgefy as a tool to
counter a government-mandated Internet shutdown [46,49] in summer 2020. The
Bridgefy developers reported an uptick in adoption [77].

Belarus. Social media posts and the Bridgefy developers suggest adoption in
light of a government-mandated Internet shutdown [78].

Thailand. Social media posts encouraged student protesters to install the Bri-
dgefy application during August 2020 [70].

1.1 Contributions

We reverse engineered Bridgefy’s messaging platform, giving an overview in
Sect. 3, and in Sect. 4 report several vulnerabilities voiding both the security
claims made by the Bridgefy developers and the security goals arising from its
use in large-scale protests. In particular, we describe various avenues for track-
ing users of the Bridgefy application and for building social graphs of their
interactions both in real time and after the fact. We then use the fact that Bri-
dgefy implemented no effective authentication mechanism between users (nor a
state machine) to impersonate arbitrary users. This attack is easily extended to
an attacker-in-the-middle (MITM) attack for subverting public-key encryption.
We also present variants of Bleichenbacher’s attack [12] which break confiden-
tiality using ≈ 217 chosen ciphertexts. Our variants exploit the composition of
PKCS#1 v1.5 encryption and Gzip compression in Bridgefy. Moreover, we utilise
compression to undermine the advertised resilience of Bridgefy: using a single
message “zip bomb” we could completely disable the mesh network, since clients
would forward any payload before parsing it which then caused them to hang
until a reinstallation of the application.

Overall, we conclude that using Bridgefy, as available prior to our work,
represented a significant risk to participants of protests. In October 2020 and
in response to this work, the Bridgefy developers published a revision of their
framework and application adopting the Signal protocol. We discuss our findings
and report on the disclosure process in Sect. 5.

2 Preliminaries

We denote concatenation of strings or bytes by ||. Strings of byte values are
written in hexadecimal and prefixed with 0x, in big-endian order.

We analysed the Bridgefy apk version 2.1.28 dated January 2020 and avail-
able in the Google Play store. It includes the Bridgefy SDK version 1.0.6. In what
follows, when we write “Bridgefy” we mean this apk and SDK versions, unless
explicitly stated otherwise. As stated above, the Bridgefy developers released an
update of both their apk and their SDK in response to a preliminary version
of this work and our analysis does not apply as is to these updated versions
(cf. Sect. 5).

378 M. R. Albrecht et al.

2.1 Reverse Engineering

Since the Bridgefy source code was not available, we decompiled the apk to
(obfuscated) Java classes using Jadx [61]. The initial deobfuscation was done
automatically by Jadx, with the remaining classes and methods being done by
hand using artefacts left in the code and by inspecting the application’s execu-
tion.

This inspection was performed using Frida, a dynamic instrumentation
toolkit [28], which allows for scripts to be injected into running processes, essen-
tially treating them as black boxes but enabling a variety of operations on them.
In the context of Android applications written in Java, these include tracing
class instances and hooking specific functions to monitor their inputs/outputs
or to modify their behaviour during runtime.

2.2 Primitives Used

Message Encoding. To encapsulate Bluetooth messages and their metadata,
Bridgefy uses MessagePack [29], a binary serialisation format that is more com-
pact than and advertised as an alternative to JSON.

It is then compressed using Gzip [39], which utilises the widely-used
DEFLATE compressed data format [38]. The standard implementation found
in the java.util.zip library is used in the application. A Gzip file begins with a
10-byte header, which consists of a fixed prefix 0x1f8b08 followed by a flags byte
and six additional bytes which are usually set to 0. Depending on which flags
are set, optional fields such as a comment field are placed between the header
and the actual DEFLATE payload. A trailer at the end of the Gzip file consists
of two 4-byte fields: a CRC32 and the length, both over the uncompressed data.

RSA PKCS#1 v1.5. Bridgefy uses the (now deprecated) PKCS#1 v1.5 [40]
standard. This standard defines a method of using RSA encryption, in particular
specifying how the plaintext should be padded before being encrypted. The
format of the padded data that will be encrypted is 0x0002 || <random non-zero
bytes> || 0x00 || <message>. If the size of the RSA modulus and hence the size
of the encryption block is k bytes, then the maximum length of the message is
k − 11 bytes to allow for at least 8 bytes of padding.

This padding format enables a well-known attack by Bleichenbacher [12]
(for variants/improvements of Bleichenbacher’s attack see e.g. [6,7,14,44]). The
attack requires a padding oracle, i.e. the ability to obtain an answer to whether
a given ciphertext decrypts to something that conforms to the padding for-
mat. Sending some number of ciphertexts, each chosen based on previous oracle
responses, leads to full plaintext recovery. For RSA with k = 128, the number
of chosen ciphertexts required has been shown to be between 212 and 216 [16].

In more detail, let c be the target ciphertext, n the public modulus, and (e, d)
the public and private exponents, respectively. We have pad(m) = cd mod n
for the target message m. The chosen ciphertexts will be of the form c∗ = se · c
mod n for some s. If c∗ has correct padding, we know the first two bytes of

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 379

s · pad(m), and hence a range for its possible values. The attack thus first finds
small values of s which result in a positive answer from the oracle and for each
of them computes a set of ranges for the value of pad(m). Once there is only one
possible range, larger values of s are tried in order to narrow this range down to
only one value, which is the original message.

2.3 Related Work

Secure Messaging. Message layer security has received renewed attention in
the last decade, with an effort to standardise a protocol – simply dubbed Mes-
saging Layer Security (MLS) – now underway by the IETF [66], with several
academic works proposing solutions or analysing security [4,5,23]. The use of
secure messaging by “high-risk users” is considered in [26,34]. In particular,
those works analyse interviews with human rights activists and secure messag-
ing application developers to establish common and diverging concerns.

Compression in Security. The first compression side channels in the context of
encryption were described by [43], based on the observation that the compression
rate can reveal information about the plaintext. Since then, there have been
practical attacks exploiting the compression rate “leakage” in TLS and HTTP,
dubbed CRIME [25] and BREACH [32], which enabled the recovery of HTTP
cookies and contents, respectively. Similarly, [31] uses Gzip as a format oracle in a
CCA attack. Beyond cryptography, compression has also been utilised for denial
of service attacks in the form of so-called “zip bombs” [27], where an attacker
prepares a compressed payload that decompresses to a massive message.

Mesh Networking Security. Wireless mesh networks have a long history, but
until recently they have been developed mainly in the context of improving or
expanding Wi-Fi connectivity via various ad hoc routing protocols, where the
mesh usually does not include client devices. Flood-based networks using Blue-
tooth started gaining traction with the introduction of BLE, which optimises for
low power and low cost, and which has been part of the core specification [13]
since Bluetooth 4.0. BLE hardware is integrated in all current major smart-
phone brands, and the specification has native support in all common operating
systems.

Previous work on the security analysis of Bluetooth focused on finding vulner-
abilities in the pairing process or showing the inadequacy of its security modes,
some of which have been fixed in later versions of the specification (see [24,35]
for surveys of attacks focusing on the classic version of Bluetooth). As a more
recent addition, BLE has not received as much comprehensive analysis, but gen-
eral as well as IoT-focused attacks exist [41,56,60,80]. Research on BLE-based
tracking has looked into the usage of unique identifiers by applications and IoT
devices [9,82]. The literature on security in the context of BLE-based mesh
networks is scarce, though the Bluetooth Mesh Profile [58] developed by the
Bluetooth SIG is now beginning to be studied [2,3].

380 M. R. Albrecht et al.

2.4 Alternative Mesh Applications

We list various alternative chat applications that target scenarios where Internet
connectivity is lacking, in particular paying attention to their potential use in a
protest setting.

FireChat. FireChat [52] was a mobile application for secure wireless mesh net-
working meant for communication without an Internet connection. Though it
was not built for protests, it became the tool of choice in various demonstrations
since 2014, e.g. in Iraq, Hong Kong and Taiwan [8,11,42], and since then was
also promoted as such by the creators of the application. However, it had not
received any updates in 2019 and as of April 2020, it is no longer available on
the Google Play store and its webpage has been removed, so it appears that its
development has been discontinued.

BLE Mesh Networking. Bluetooth itself provides a specification for build-
ing mesh networks based on Bluetooth Low Energy that is referred to as the
Bluetooth Mesh Profile [58]. While it defines a robust model for implementing
a flood-based network for up to 32,000 participating nodes, its focus is not on
messaging but rather connectivity of low-power IoT devices within smart homes
or smart cities. As a result, it is more suitable for networks that are managed
centrally and whose topology is stable over time, which is the opposite of the
unpredictable and always-changing flow of a crowd during a mass protest. Fur-
ther, it makes heavy use of the advertising bearer (a feature not widely available
in smartphones), which imposes constraints on the bandwidth of the network
– messages can have a maximum size of 384 bytes, and nodes are advised to
not transmit more than 100 messages in any 10 s window. The profile makes
use of cryptography for securing the network from outside observers as well as
from outside interference, but it does expect participating nodes to be benign,
which cannot be assumed in the messaging setting. From within the network, a
malicious node can not only observe but also impersonate other nodes and deny
them service.

HypeLabs. The Hype SDK offered by HypeLabs [37] sets out a similar goal as
Bridgefy, which is to offer secure mesh networks for a variety of purposes when
there is no Internet connection. Besides Bluetooth, it also utilises Wi-Fi, and
supports a variety of platforms. Among its use cases, the Hype SDK whitepa-
per [36] lists connectivity between IoT devices, social networking and messaging,
distributed storage as well as connectivity during catastrophes and emergency
broadcasting. While an example chat application is available on Google Play
(with only 100+ downloads), HypeLabs does not offer the end-user solutions
for those use cases themselves, merely offering the SDK as a paid product for
developers. There is no information available on what applications are using the
SDK, if any.

Briar. Briar [55] describes itself as “secure messaging, anywhere” [55] and is
referenced in online discussions on the use of mesh networking applications in
protests [50]. However, Briar does not realise a mesh network. Instead it opens

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 381

point-to-point sockets over a Bluetooth Classic (as opposed to Low Energy) chan-
nel to nearby nodes. Its reach is thus limited to one hop unless users manually
forward messages.

Serval. Serval Mesh [30] is an Android application implementing a mesh network
using Wi-Fi that sets its goal as enabling communication in places which lack
infrastructure. Originally developed for natural disasters, the project includes
special hardware Mesh Extenders that are supposed to enhance coverage. While
the application is available for download, it cannot be accessed from Google Play
because it targets an old version of Android to allow it to run on older devices
such as the ones primarily used in rural communities. Work on the project is still
ongoing, as it is not ready for deployment at scale. Hence its utility in large-scale
protests where access to technology itself is not a barrier is currently limited.

Subnodes. The use of additional hardware devices enables a different approach
to maintaining connectivity, which is taken by the open source project Subn-
odes [65]. It allows local area wireless networks to be set up on a Raspberry
Pi, which then acts as a web server that can provide e.g. a chat room. Multiple
devices can be connected in a mesh using the BATMAN routing protocol [53],
which is meant for dynamic and unreliable networks. However, setting up and
operating such a network requires technical knowledge. In the setting of a protest,
even carrying the hardware device for one of the network’s access points could
put the operator at risk.

3 Bridgefy Architecture

In this section, we give an overview of the Bridgefy messaging architecture.
The key feature of Bridgefy is that it exchanges data using Bluetooth when an
Internet connection is not available. The application can send the following kinds
of messages:

– one-to-one messages between two parties
• sent over the Internet if both parties are online,
• sent directly via Bluetooth if the parties are in physical range, or
• sent over the Bluetooth mesh network, and

– Bluetooth broadcast messages that anyone can read in a special “Broadcast
mode” room.

Note that the Bluetooth messages are handled separately from the ones
exchanged over the Internet using the Bridgefy server, i.e. there is no support
for communication between one user who is on the Internet and one who is on
the mesh network.

3.1 Bluetooth Messages

Bridgefy supports connections over both BLE and Bluetooth Classic, but the
latter is a legacy option for devices without BLE support, so we focus on BLE.

382 M. R. Albrecht et al.

How the Generic Attribute Profile (GATT) protocol is configured is not relevant
for our analysis, so we only consider message processing starting from and up to
characteristic read and write requests. BLE packet data is received as an array
of bytes, which is parsed according to the MessagePack format and processed
further based on message type. At the topmost level, all messages are represented
as a BleEntity which has a given entity type et. Table 1 matches the entity type
to the type of its content ct and the class that implements it. Details of all classes
representing messages can be found in the full version of this paper2.

Table 1. Entity types.

BleEntity types

et content class for ct

0 Handshake BleHandshake

1 Direct message BleEntityContent

3 Mesh message ForwardTransaction

AppEntity types

et content extending class

0 Encrypted handshake AppEntityHandShake

1 Any message AppEntityMessage

4 Receipt AppEntitySignal

Encryption Scheme. One-to-one Bluetooth (mesh and direct) messages in Bri-
dgefy, represented as MessagePacks, are first compressed using Gzip and then
encrypted using RSA with PKCS#1 v1.5 padding. The key size is 2048 bits and
the input is split into blocks of size up to 245 bytes and encrypted one-by-one
in an ECB-like fashion using Java SE’s “RSA/ECB/PKCS1Padding”, produc-
ing output blocks of size 256 bytes. Decryption errors do not produce a user or
network visible direct error message.

Direct Messages. Messages sent to a user who is in direct Bluetooth range have
et = 1 and so ct is of type BleEntityContent. Upon reception, its payload is
decrypted, decompressed and then used to construct the content of a Message
object. Note that the receiver does not parse the sender ID from the message
itself. Instead, it sets the sender to be the user ID which corresponds to the device
from which it received the message. This link between user IDs and Bluetooth
devices is determined during the initial handshake that we describe in Sect. 3.2.

The content of the Message object is parsed into an AppEntity, which also
contains an entity type et that determines the final class of the message. A
direct message has et = 1 here as well, so it is parsed as an AppEntityMessage.
Afterwards, a delivery receipt for the message that was received is sent and the
message is displayed to the user. Receipts take the format of AppEntitySignal:
one is sent when a message is delivered as described above, and another one
when the user views the chat containing the message.
2 Available at https://eprint.iacr.org/2021/214.

https://eprint.iacr.org/2021/214

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 383

Mesh Messages. Bridgefy implements a managed flood-based mesh network, pre-
venting infinite loops using a time-to-live counter that is decremented whenever
a packet is forwarded; when it reaches zero the packet is discarded. Messages
that are transmitted using the mesh network, whether it is one-to-one messages
encrypted to a user that is not in direct range, or unencrypted broadcast mes-
sages that anyone can read, have et = 3. Such a BleEntity may hold multiple
mesh messages of either kind. We note that these contain the sender and the
receiver of one-to-one messages in plaintext.

The received one-to-one mesh messages are processed depending on the
receiver ID – if it matches the client’s user ID, they will try to decrypt the
message, triggering the same processing as in the case of direct messages, and
also send a special “mesh reach” message that signals that the encrypted mes-
sage has found its recipient over the mesh. If the receiver ID does not match,
the packet is added to the set of packets that will be forwarded to the mesh.

The received broadcast messages are first sent to the mesh. Then the client
constructs AppEntityMessages and processes them the same as one-to-one mes-
sages before displaying them.

3.2 Handshake Protocol

Clients establish a session by running a handshake protocol, whose messages
follow the BleEntity form with et = 0. The content of the entity is parsed as a
BleHandshake which contains a request type rq and response rp. The handshake
protocol is best understood as an exchange of requests and responses such that
each message consists of a response to the previous request bundled with the
next request. There are three types of requests:

– rq = null: no request,
– rq = 0: general request for user’s information,
– rq = 1: request for user’s public key.

The first handshake message that is sent when a new BLE device is detected,
regardless of whether they have communicated before, has rq = 0 and also con-
tains the user’s ID, supported versions of the SDK and the CRC32 of the user’s
public key. The processing of received handshake messages depends on whether
the two users know each other’s public keys (either because they have connected
before, or because they are contacts and the server supplied the keys when they
were connected to the Internet).

Key Exchange. In the case when the parties do not have each other’s public
keys, this exchange is illustrated in Fig. 1: Ivan is already online and scanning
for other users when Ursula comes into range and initiates the handshake. The
protocol can be understood to consist of two main parts, first the key exchange
that occurs in plaintext, and second an encrypted “application handshake” which
exchanges information such as usernames and phone numbers. Before the second

384 M. R. Albrecht et al.

part begins, the devices may also exchange recent mesh messages that the device
that was offline may have missed.3

I U

et=0, BleHS(rq=0, Rp(type=0, uidU, crc(pkU)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=0, BleHS(rq=1, Rp(type=0, uidI, crc(pkI)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

et=0, BleHS(rq=1, Rp(type=1, uidU, crc(pkU), pkU))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=0, BleHS(rq=null, Rp(type=1, uidI, crc(pkI), pkI))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

et=1, AppHS(ARq(tp=0), null)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=1, AppHS(ARq(tp=0), ARp(tp=0, uidI, unI, vrf=1))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

et=1, AppHS(null, ARp(tp=0, uidU, unU, vrf=1))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=1, AppHS(null, ARp(tp=2, uidU))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 1. Handshake protocol including key exchange between Ivan and Ursula. We abb-
reviate HandShake with HS. Here uidI, uidU are user IDs, pkI, pkU are the public keys
and unI, unU are usernames of Ivan and Ursula, and crc(pkU) > crc(pkI). Messages in
italics are encrypted.

In Fig. 1 some fields of the objects are omitted for clarity. Rp represents a
response object (ResponseJson) while ARq and ARp are application requests and
responses (AppRequestJson and AppResponseJson). The AppHandShake(rq, rp)
object is wrapped in an AppEntityHandShake which forms the content of the
Message that is actually compressed and encrypted. Note that the order of who
initialises the BleHandshake depends on which user came online later, while the
first AppHandShake is sent by the party whose CRC32 of their public key has a
larger value. We are also only displaying the case when a user has not verified
their phone number (which is the default behaviour in the application), i.e.
vrf = 1. If they have, AppHandShake additionally includes a request and a
response for the phone number.

3 This is facilitated by the dump flag in ForwardTransaction, but we omit this exchange
in the figure as it is not relevant to the actual handshake protocol.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 385

Known Keys. In the case when both parties already know each other’s public
keys, there are only two BleHandshake messages exchanged, and both follow the
format of the first message shown in Fig. 1, where rq = 0. The exchange of
encrypted AppHandShake messages then continues unchanged.

Conditions. When two devices come into range, the handshake protocol is exe-
cuted automatically and direct messages can only be sent after the handshake
is complete. Only clients in physical range can execute the BleHandShake part
of the protocol. Devices that are communicating via the mesh network do not
perform the handshake at all, so they can only exchange messages if they already
know each other’s keys from the Bridgefy server or because they have been in
range once before.

3.3 Routing via the Bridgefy Server

An Internet connection is required when a user first installs the application,
which registers them with the Bridgefy server. All requests are done via HTTPS,
the APIs for which are in the package me.bridgefy.backend.v3.

The BgfyUser class that models the information that is sent to the server
during registration contains the user’s chosen name, user ID, the list of users
blocked by this user, and if they are “verified” then also their phone number.
Afterwards, a contacts request is done every time an Internet connection is avail-
able (regardless of whether a user is verified or not) and the user refreshes the
application. The phone numbers of the user’s contacts are uploaded to the server
to obtain a list of contacts that are also Bridgefy users. BgfyKeyApi then provides
methods to store and retrieve the users’ public keys from the server.

Messages sent between online users are of a simpler form than the Bluetooth
messages: an instance of BgfyMessage contains the sender and receiver IDs, the
RSA encryption of the text of the message and some metadata, such as a times-
tamp and the delivered/read status of the message in plaintext. The server will
queue messages sent to users who are not currently online until they connect to
the Internet again.

4 Attacks

In this section, we show that Bridgefy does not provide confidentiality of mes-
sages and also that it does not satisfy the additional security needs arising in a
protest setting: privacy, authenticity and reliability in adversarial settings.

4.1 Privacy

Here, we discuss vulnerabilities in Bridgefy pertaining to user privacy in con-
trast to confidentiality of messages. We note that Bridgefy initially made no
claim about anonymity in its marketing but disabled mandating phone number
verification to address anonymity needs in 2019 [72].

386 M. R. Albrecht et al.

Local User Tracking. To prevent tracking, Bluetooth-enabled devices may use
“random” addresses which change over time (for details on the addressing scheme
see [13, Section 10.8]). However, when a Bridgefy client sends BLE ADV IND
packets (something that is done continuously while the application is running),
it transmits an identifier in the service data that is the CRC32 value of its user
ID, encoded in 10 bytes as decimal digits. The user ID does not change unless the
user reinstalls the application, so passive observation of the network is enough
to enable tracking all users.

In addition, the automatic handshake protocol composed with public-key
caching provides a mechanism to perform historical contact tracing. If the devices
of two users have been in range before, they will not request each other’s public
keys, but they will do so automatically if that has not been the case.

Participant Discovery. Until December 2019 [72], Bridgefy required users to
register with a phone number. Users still have the option to do so, but it is
no longer the default. If the user gives the permission to the application to
access the contacts stored on their phone, the application will check which of
those contacts are already Bridgefy users based on phone numbers and display
those contacts to the user. When Bridgefy is predominantly installed on phones
of protesters, this allows the identification of participants by running contact
discovery against all local phone numbers. While an adversary with significant
control over the network, such as a state actor, might have alternative means
to collect such information, this approach is also available to e.g. employers or
activists supporting the other side.

Social Graph. All one-to-one messages sent over the mesh network contain
the sender and receiver IDs in plaintext, so a passive adversary with physical
presence can build a social graph of what IDs are communicating with whom.
The adversary can further use the server’s API to learn the usernames corre-
sponding to those IDs (via the getUserById request in BgfyUserApi). In addition,
since three receipts are sent when a message is received – “mesh reach” in clear,
encrypted “delivery” receipt, encrypted “viewed” receipt – a passive attacker can
also build an approximate, dynamic topology of the network, since users that
are further away from each other will have a larger delay between a message and
its receipts.

4.2 Authenticity

Bridgefy does not utilise cryptographic authentication mechanisms. As a result,
an adversary can impersonate any user.

The initial handshake through which parties exchange their public keys or
identify each other after coming in range relies on two pieces of information to
establish the identities: a user ID and the lower-level Bluetooth device address.
Neither of these is an actual authentication mechanism: the user ID is public
information which can be learned from observing the network, while [56] shows
that it is possible to broadcast with any BLE device address.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 387

However, an attacker does not need to go to such lengths. Spoofing can be
done by sending a handshake message which triggers the other side to overwrite
the information it currently has associated with a given user. Suppose there are
two users who have communicated with each other before, Ursula and Ivan, and
the attacker wishes to impersonate Ivan to Ursula. When the attacker comes
into range of Ursula, she will initiate the handshake. The attacker will send a
response of type 1, simply replacing its own user ID, public key and the CRC of
its public key with Ivan’s, and also copies Ivan’s username, as shown in Fig. 2.

This works because the processing of handshakes in Bridgefy is not stateful
and parts of the handshake such as the request value rq and type of rp act as
control messages. This handshake is enough for Ursula’s application to merge the
attacker and Ivan into one user, and therefore show messages from the attacker as
if they came from Ivan. If the real Ivan comes in range at the time the attacker
is connected to Ursula, he will be able to communicate with her and receive
responses from her that the attacker will not be able to decrypt. However, he
will not be able to see the attacker’s presence. We implemented this attack and
verified that it works, see Sect. 4.3.

The messages exchanged over the mesh network (when users are not in direct
range) merely contain the user ID of the sender, so they can be spoofed with
ease. We also note that although the handshake protocol is meant for parties in
range, the second part of the handshake (i.e. AppHandshake) can also be sent
over the mesh network. This means that users can be convinced to change the
usernames and phone numbers associated with their Bridgefy contacts via the
mesh network.

A U

BleHS(rq=0, Rp(type=0, uidU, crc(pkU)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BleHS(rq=1, Rp(type=1, uidI, crc(pkI), pkI))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

BleHS(rq=null, Rp(type=1, uidU, crc(pkU), pkU))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 2. Impersonation attack, with attacker modifications in bold.

4.3 Confidentiality

Confidentiality of message contents is both a security goal mentioned in Bri-
dgefy’s marketing material and relied upon by participants in protests. In this
section, we show that the implemented protections are not sufficient to satisfy
this goal.

388 M. R. Albrecht et al.

IND-CPA. Bridgefy’s encryption scheme only offers a security level of 264 in a
standard IND-CPA security game, i.e. a passive adversary can decide whether
a message m0 or m1 of its choosing was encrypted as c. The adversary picks
messages of length 245 bytes and tries all 2558 possible values for PKCS#1 v1.5
padding until it finds a match for the challenge ciphertext c.

Plaintext File Sharing. Bridgefy allows its users to send direct messages com-
posed of either just text or containing a location they want to share. The latter
is processed as a special text message containing coordinates, and so these two
types are encrypted, but the same is not true for any additional data such as
image files. Only the payload of the BleEntityContent is encrypted, which does
not include the byte array BleEntity.data that is used to transmit files. While
the application itself does not currently offer the functionality to share images
or other files, it is part of the SDK and receiving media files does work in the
application. The fact that files are transmitted in plaintext is not stated in the
documentation, so for developers using the SDK it would be easy to assume that
files are shared privately when using this functionality.

MITM. This attack is an extension of the impersonation attack described in
Sect. 4.2 where we convince the client to change the public key for any user ID
it has already communicated with. Suppose that Ivan is out of range, and the
attacker initiates a handshake with Ursula where rq = null, rp is of type 0 and
contains the CRC of the attacker’s key as well as Ivan’s user ID as the sender
ID (the user ID being replaced in all following handshake messages as well).
The logic of the handshake processing in Ursula’s client dictates that since the
CRC does not match the CRC of Ivan’s key that it has saved, it has to make
a request of type 1, i.e. a request for an updated public key. Then the attacker
only needs to supply its own key, which will get associated with Ivan’s user ID,
as shown in Fig. 3. Afterwards, whenever Ursula sends a Bluetooth message to
Ivan, it will be encrypted under the attacker’s key. Further, Ursula’s client will
display messages from the attacker as if they came from Ivan, so this attack
also provides impersonation. If at this stage Ivan comes back in range, he will
not be able to connect to Ursula. The attack is not persistent, though – if the
attacker goes out of range, Ivan (when in range) can run a legitimate handshake
and restore communication.

We verified this and the previous impersonation attack in a setup with four
Android devices, where the attacker had two devices running Frida scripts that
modified the relevant handshake messages. Two attacker devices were used to
instantiate a full attacker in the middle attack, which is an artefact of us hot-
patching the Bridgefy application using Frida scripts: one device to communicate
with Ursula on behalf of Ivan and another with Ivan on behalf of Ursula.

We also note that since the Bridgefy server serves as a trusted database of
users’ public keys, if compromised, it would be trivial to mount an attacker in the
middle attack on the communication of any two users. This would also impact
users who are planning to only use the application offline since the server would
only need to supply them the wrong keys during registration.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 389

A U

BleHS(rq=null, Rp(type=0, uidI, crc(pkA)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
BleHS(rq=1, null)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

BleHS(rq=null, Rp(type=1, uidI, crc(pkA), pkA))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 3. One side of the MITM attack, with attacker modifications in bold.

Padding Oracle Attack. The following chosen ciphertext attack is enabled by
the fact that all one-to-one messages use public-key encryption but no authen-
tication, so we can construct valid ciphertexts as if coming from any sender. We
can also track BLE packets and replay them at will, reordering or substituting
ciphertext blocks.

We instantiate a variant of Bleichenbacher’s attack [12] on RSA with
PKCS#1 v1.5 padding using Bridgefy’s delivery receipts. This attack relies
on distinguishing whether a ciphertext was processed successfully or not. The
receiver of a message sends a message status update when a message has been
received and processed, i.e. decrypted, decompressed and parsed. If there was an
error on the receiver’s side, no message is sent. No other indication of successful
delivery or (type of) error is sent. Since the sender of a Bridgefy message can-
not distinguish between decryption errors or decompression errors merely from
the information it gets from the receiver, we construct a padding oracle that
circumvents this issue.

Suppose that Ivan sends a ciphertext c encrypting the message m to Ursula
that we intercept. In the classical Bleichenbacher’s attack, we would form a new
ciphertext c∗ = se · c mod n for some s where n is the modulus and e is the
exponent of Ursula’s public key. Now suppose that c∗ has a correct padding. Since
messages are processed in blocks, we can prepend and append valid ciphertexts.
These are guaranteed to pass the padding checks as they are honestly generated
ciphertexts (we recall that there is no authentication). We will construct these
blocks in such a way that decompression of the joint contents will succeed with
non-negligible probability, and therefore enable us to get a delivery receipt which
will instantiate our padding oracle.

The Gzip file format [39] specifies a number of optional flags. If the flag
FLG.FCOMMENT is set, the header is followed by a number of “comment” bytes,
terminated with a zero byte, that are essentially ignored. In particular, these
bytes are not covered by the CRC32 checksum contained in the Gzip trailer.
Thus, we let c0 be the encryption of a 10-byte Gzip header with this flag set
followed by up to 245 non-zero bytes, and let c1 be the encryption of a zero byte
followed by a valid compressed MessagePack payload (i.e. of a message from the
attacker to Ursula) and Gzip trailer.

390 M. R. Albrecht et al.

When put together, c0||c∗||c1 encrypts a correctly compressed message as
long as unpad(s · pad(m)) (which is part of the comment field) does not contain
a zero byte, and therefore Ursula will send a delivery receipt for the attacker’s
message. The probability that the comment does not contain a zero byte for
random s is ≥ (1 − 1

256)245 ≈ 0.383.
To study the number of adaptively chosen ciphertexts required, we adapted

the simulation code from [16] for the Bleichenbacher-style oracle encountered in
this attack: a payload will pass the test if it has valid padding for messages of any
valid length (“FFT” in [7] parlance) and if it does not contain a zero byte in the
“message” part after splitting off the padding. We then ran a Bleichenbacher-
style attack 4, 096 times (on 80 cores, taking about 12h in total) and recorded
how often the oracle was called in each attack. We give a histogram of our data
in Fig. 4. The median is 216.75, the mean 217.36. Our SageMath [64] script, based
on Python code in [16], and the raw data for Fig. 4 are attached to the electronic
version of this document.

1 2 3 4 5
·105

200

400

600

Number of oracle queries

Fr
eq
ue

nc
y

Fig. 4. Density distribution for number of ciphertexts required to mount a padding-
oracle attack via Gzip comments.

We have verified the applicability of this attack in Bridgefy using ciphertexts
c∗ constructed to be PKCS#1 v1.5-conforming (i.e. where we set s = pad(m)−1 ·
pad(r) mod n where r is 245 random bytes). We used Frida to run a script on
the attacker’s device that would send c0||c∗||c1 to the target Bridgefy user via
Bluetooth, and record whether it gets a delivery receipt for the message contained
in c1 or not. The observed frequency of the receipts matched the probability
given earlier. This oracle suffices to instantiate Bleichenbacher’s original attack.
In our preliminary experiments we were able to send a ciphertext every 450 ms,

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 391

suggesting 50% of attacks complete in less than 14 h. We note, however, that our
timings are based on us hotpatching Bridgefy to send the messages and that a
higher throughput might be achievable.

Padding Oracles from a Timing Side-Channel. Our decompression oracle
depends on the Bridgefy SDK processing three blocks as a joint ciphertext. While
we verified that this behaviour is also exhibited by the Bridgefy application, the
application itself never sends ciphertexts that span more than two blocks as it
imposes a limit of 256 bytes on the size of the text of each message. Thus, a
stopgap mitigation of our previous attack could be to disable the processing of
more than two blocks of ciphertext jointly together.

We sketch an alternative attack that only requires two blocks of ciphertext
per message. It is enabled by the fact that when a receiver processes an incorrect
message, there is a difference in the time it takes to process it depending on
what kind of error was encountered. This difference is clearly observable for
ciphertexts that consist of at least two blocks, where the error occurs in the
first block. We note that padding errors occurring in the second block can be
observed by swapping the blocks, as they are decrypted individually.

Figure 5 (raw data is attached to the electronic version of this document)
shows the differences for experiments run on the target device, measured using
Frida. A script was injected into the Bridgefy application that would call the
method responsible for extracting a message from a received BLE packet (includ-
ing decryption and decompression) on given valid or invalid data. The execution
time of this method was measured directly on the device using Java.

If multiple messages are received, they are processed sequentially, which
enables the propagation of these timing differences to the network level. That is,
the attacker sends two messages, one consisting of c∗||c′ where c∗ = se ·c mod n
is the modified target ciphertext and c′ is an arbitrary ciphertext block, and one
consisting of some unrelated message, either as direct messages one after another
or a mesh transaction containing both messages among its packets. The side-
channel being considered is then simply the time it takes to receive the delivery
receipt on the second valid message.

We leave exploring whether this could be instantiated in practice to future
work, since our previous attacks do not require this timing channel. We note,
though, that an adversary would likely need more precise control over the timing
of when packets are released than that offered by stock Android devices in order
to capture the correct difference in a BLE environment.

4.4 Denial of Service

Bridgefy’s appeal to protesters to enable messaging in light of an Internet shut-
down makes resilience to denial of service attacks a key concern. While a flood-
based network can be resilient as a consequence of its simplicity, some particu-
larities of the Bridgefy setup make it vulnerable.

392 M. R. Albrecht et al.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

Time (ms)

Fr
eq
ue

nc
y

padding error
gzip error

error type N μ σ σ/
√

N

bad padding 1360 33.882956 3.137260 0.085071
gzip error 1508 42.557275 4.273194 0.110040

Fig. 5. Execution time of ChunkUtils.stitchChunksToEntity for 2 ciphertext blocks in
milliseconds. In the table, N is the number of samples in each experiment.

Broad DoS. Due to the use of compression, Bridgefy is vulnerable to “zip
bomb” attacks. In particular, compressing a message of size 10 MB containing
a repeated single character results in a payload of size 10 KB, which can be
easily transmitted over the BLE mesh network. Then, when the client attempts
to display this message, the application becomes unresponsive to the point of
requiring reinstallation to make it usable again. Sending such a message to the
broadcast chat provides a trivial way of disabling many clients at the same
time, since clients will first forward the message further and only then start
the processing to display it which causes them to hang. As a consequence, a
single adversarially generated message can take down the entire network. We
implemented this attack and tested it in practice on a number of Android devices.

Targeted DoS. A consequence of the MITM attack from Sect. 4.3 is that it
provides a way to prevent given two users from connecting, even if they are in
Bluetooth range, since the attacker’s key becomes attached to one of the user
ids.

5 Discussion

While our attacks reveal severe deficiencies in the security of both the Bridgefy
application (v2.1.28) and the SDK (v1.0.6), it is natural to ask whether they are
valid and what lessons can be drawn from them for cryptographic research.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 393

Given that most of our attacks are variants of attacks known in the literature,
it is worth asking why Bridgefy did not mitigate against them. A simple answer
to this question might be that the application was not designed for adversarial
settings and that therefore our attacks are out of scope, externally imposing
security goals. However, such an account would fail to note that Bridgefy’s secu-
rity falls short also in settings where attacks are not expected to be the norm,
i.e. Bridgefy does not satisfy standard privacy guarantees expected of any mod-
ern messaging application. In particular, prior to our work, Bridgefy developers
advertised the app/SDK as “private” and as featuring end-to-end encryption;
our attacks thus broke Bridgefy’s own security claims.

More importantly, however, Bridgefy is used in highly adversarial settings
where its security ought to stand up to powerful nation-state adversaries and the
Bridgefy developers advertise their application for these contexts [45,71,73,74].
Technologies need to be evaluated under the conditions they are used in. Here,
our attacks highlight the value of secure by design approaches to development.
While designers might envision certain use cases, users, in the absence of alter-
natives, may reach for whatever solution is available.

Our work thus draws attention to this problem space. While it is difficult to
assess the actual reliance of protesters on mesh communication, the idea of resilient
communication in the face of a government-mandated Internet shutdown is
present throughout protests across the globe [8,10,11,42,45,46,70,73,74,76,78].
Yet, these users are not well served by the existing solutions they rely on. Thus,
it is a pressing topic for future work to design communication protocols and
tools that cater to these needs. We note, though, that this requires understand-
ing “these needs” to avoid a disconnect between what designers design for and
what users in these settings require [26,34].

5.1 Responsible Disclosure

We disclosed the vulnerabilities described in this work to the Bridgefy develop-
ers on 27 April 2020 and they acknowledged receipt on the same day. We agreed
on a public disclosure date of 24 August 2020. Starting from 1 June 2020, the
Bridgefy team began informing their users that they should not expect confiden-
tiality guarantees from the current version of the application [79]. On 8 July 2020,
the developers informed us that they were implementing a switch to the Signal
protocol to provide cryptographic assurances in their SDK. On 24 August 2020,
we published an abridged4 version of this paper in conjunction with a media
article [33]. The Bridgefy team published a statement on the same day [19]. On
30 October 2020, an update finalising the switch to Signal was released [21].
If implemented correctly, it would rule out many of the attacks described in
this work. Note, however, that we have not reviewed these changes and we rec-
ommend an independent security audit to verify they have been implemented
correctly.

4 We had omitted details of the Bridgefy architecture, as the attacks had not been
mitigated at that point in time.

394 M. R. Albrecht et al.

Acknowledgements. Part of this work was done while Albrecht was visiting the
Simons Institute for the Theory of Computing. The research of Mareková was supported
by the EPSRC and the UK Government as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London (EP/P009301/1). We thank
Kenny Paterson and Eamonn Postlethwaite for comments on an earlier version of this
paper.

References

1. Bridgefy, April 2020. https://web.archive.org/web/20200411143157/www.
bridgefy.me/

2. Adomnicai, A., Fournier, J.J.A., Masson, L.: Hardware security threats against
Bluetooth mesh networks. In: 2018 IEEE Conference on Communications and Net-
work Security, CNS 2018, Beijing, China, 30 May–1 June 2018, pp. 1–9. IEEE
(2018). https://doi.org/10.1109/CNS.2018.8433184

3. Álvarez, F., Almon, L., Hahn, A., Hollick, M.: Toxic friends in your network: break-
ing the Bluetooth Mesh friendship concept. In: Mehrnezhad, M., van der Merwe,
T., Hao, F. (eds.) Proceedings of the 5th ACM Workshop on Security Standardisa-
tion Research Workshop, London, UK, 11 November 2019, pp. 1–12. ACM (2019).
https://doi.org/10.1145/3338500.3360334

4. Alwen, J., et al.: Keep the dirt: Tainted TreeKEM, an efficient and provably secure
continuous group key agreement protocol. Cryptology ePrint Archive, Report
2019/1489 (2019). https://eprint.iacr.org/2019/1489

5. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. Cryptology ePrint Archive,
Report 2019/1189 (2019). https://eprint.iacr.org/2019/1189

6. Aviram, N., et al.: DROWN: breaking TLS using SSLv2. In: Holz, T., Savage, S.
(eds.): USENIX Security 2016, pp. 689–706. USENIX Association, August 2016

7. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 36

8. BBC News: Iraqis use FireChat messaging app to overcome net block, June
2014. http://web.archive.org/web/20190325080943/https://www.bbc.com/news/
technology-27994309k

9. Becker, J.K., Li, D., Starobinski, D.: Tracking anonymized Bluetooth devices. In:
Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 50–65 (2019)

10. Bhavani, D.K.: Internet shutdown? Why Bridgefy app that enables offline
messaging is trending in India, December 2019. http://web.archive.org/web/
20200105053448/https://www.thehindu.com/sci-tech/technology/internet-
shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/
article30336067.ece

11. Bland, A.: FireChat - the messaging app that’s powering the Hong Kong protests,
September 2014. http://web.archive.org/web/20200328142327/https://www.
theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-
kong-protests

12. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

https://web.archive.org/web/20200411143157/www.bridgefy.me/
https://web.archive.org/web/20200411143157/www.bridgefy.me/
https://doi.org/10.1109/CNS.2018.8433184
https://doi.org/10.1145/3338500.3360334
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://doi.org/10.1007/978-3-642-32009-5_36
http://web.archive.org/web/20190325080943/https://www.bbc.com/news/technology-27994309k
http://web.archive.org/web/20190325080943/https://www.bbc.com/news/technology-27994309k
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200328142327/https://www.theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-kong-protests
http://web.archive.org/web/20200328142327/https://www.theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-kong-protests
http://web.archive.org/web/20200328142327/https://www.theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-kong-protests
https://doi.org/10.1007/BFb0055716

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 395

13. Bluetooth SIG: Core specification 5.1, January 2019. https://www.bluetooth.com/
specifications/bluetooth-core-specification/

14. Böck, H., Somorovsky, J., Young, C.: Return of Bleichenbacher’s oracle threat
(ROBOT). In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018, pp. 817–849.
USENIX Association, August 2018

15. Borak, M.: We tested a messaging app used by Hong Kong protesters that
works without an internet connection, September 2019. http://web.archive.
org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-
messaging-app-used-hong-kong-protesters-works-without-internet-connection/
article/3025661

16. Boyle, G.: 20 Years of Bleichenbacher attacks. Technical Reports RHUL-ISG-2019-
1. Information Security Group, Royal Holloway University of London (2019)

17. Brewster, T.: Hong Kong protesters are using this ‘mesh’ messaging app–
but should they trust it? September 2019. http://web.archive.org/web/
20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/
hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-
it/

18. Bridgefy: Developers (2018). https://blog.bridgefy.me/developers.html, https://
archive.vn/yjg9f

19. Bridgefy: Bridgefy’s commitment to privacy and security, August 2020. http://web.
archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-
privacy-and-security/

20. Bridgefy: Offline messaging, April 2020. https://web.archive.org/20200411143133/
play.google.com/store/apps/details?id=me.bridgefy.main

21. Bridgefy: Technical article on our security updates, November 2020. http://web.
archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-
security-updates/

22. Cortés, V.: Bridgefy sees massive spike in downloads during Hong Kong protests,
August 2019. http://web.archive.org/web/20191013072633/www.contxto.com/
en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-
protests/

23. Cremers, C., Hale, B., Kohbrok, K.: Efficient post-compromise security beyond
one group. Cryptology ePrint Archive, Report 2019/477 (2019). https://eprint.
iacr.org/2019/477

24. Dunning, J.P.: Taming the blue beast: a survey of Bluetooth based threats. IEEE
Secur. Priv. 8(2), 20–27 (2010). https://doi.org/10.1109/MSP.2010.3

25. Duong, T., Rizzo, J.: The CRIME attack. Presentation at Ekoparty Security Con-
ference (2012)

26. Ermoshina, K., Halpin, H., Musiani, F.: Can Johnny build a protocol? Co-
ordinating developer and user intentions for privacy-enhanced secure messaging
protocols. In: 2nd IEEE European Symposium on Security and Privacy (EuroS&P
2017) (2017)

27. Fifield, D.: A better zip bomb. In: 13th USENIX Workshop on Offensive Technolo-
gies (WOOT 2019), Santa Clara. USENIX Association, August 2019

28. Frida: A dynamic instrumentation framework, v12.8.9, February 2020. https://
frida.re/

29. Furuhashi, S.: MessagePack (2008). https://msgpack.org/
30. Gardner-Stephen, P.: The Serval Project (2017). http://www.servalproject.org/
31. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the lip

of the volcano: chosen ciphertext attacks on Apple iMessage. In: Holz, T., Savage,
S. (eds.): USENIX Security 2016, pp. 655–672. USENIX Association, August 2016

https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
https://blog.bridgefy.me/developers.html
https://archive.vn/yjg9f
https://archive.vn/yjg9f
http://web.archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-privacy-and-security/
http://web.archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-privacy-and-security/
http://web.archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-privacy-and-security/
https://web.archive.org/20200411143133/play.google.com/store/apps/details?id=me.bridgefy.main
https://web.archive.org/20200411143133/play.google.com/store/apps/details?id=me.bridgefy.main
http://web.archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-security-updates/
http://web.archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-security-updates/
http://web.archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-security-updates/
http://web.archive.org/web/20191013072633/www.contxto.com/en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-protests/
http://web.archive.org/web/20191013072633/www.contxto.com/en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-protests/
http://web.archive.org/web/20191013072633/www.contxto.com/en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-protests/
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477
https://doi.org/10.1109/MSP.2010.3
https://frida.re/
https://frida.re/
https://msgpack.org/
http://www.servalproject.org/

396 M. R. Albrecht et al.

32. Gluck, Y., Harris, N., Prado, A.: BREACH: reviving the CRIME attack. Black
Hat USA (2013)

33. Goodin, D.: Bridgefy, the messenger promoted for mass protests, is a privacy dis-
aster, August 2020. https://arstechnica.com/features/2020/08/bridgefy-the-app-
promoted-for-mass-protests-is-a-privacy-disaster/

34. Halpin, H., Ermoshina, K., Musiani, F.: Co-ordinating developers and high-risk
users of privacy-enhanced secure messaging protocols. In: Cremers, C., Lehmann,
A. (eds.) SSR 2018. LNCS, vol. 11322, pp. 56–75. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-04762-7 4

35. Hassan, S.S., Bibon, S.D., Hossain, M.S., Atiquzzaman, M.: Security threats in
Bluetooth technology. Comput. Secur. 74, 308–322 (2018). https://doi.org/10.
1016/j.cose.2017.03.008

36. HypeLabs: The Hype SDK: a technical overview (2019). https://hypelabs.io/
documents/Hype-SDK.pdf

37. HypeLabs (2020). https://hypelabs.io
38. IETF: DEFLATE compressed data format specification version 1.3, May 1996.

https://tools.ietf.org/html/rfc1951
39. IETF: GZIP file format specification version 4.3, May 1996. https://tools.ietf.org/

html/rfc1952
40. IETF: PKCS #1: RSA encryption version 1.5, March 1998. https://tools.ietf.org/

html/rfc2313
41. Jasek, S.: GATTacking Bluetooth smart devices (2016). https://github.com/

securing/docs/raw/master/whitepaper.pdf
42. Josh Horwitz, T.i.A.: Unblockable? Unstoppable? FireChat messaging app unites

China and Taiwan in free speech. . . and it’s not pretty, March 2014. http://
web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-
unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-
its-not-pretty/

43. Kelsey, J.: Compression and information leakage of plaintext. In: Daemen, J., Rij-
men, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 263–276. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45661-9 21

44. Kĺıma, V., Pokorný, O., Rosa, T.: Attacking RSA-based sessions in SSL/TLS. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 426–440.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6 33

45. Koetsier, J.: Hong Kong protestors using mesh messaging app China can’t block:
usage up 3685%, September 2019. https://web.archive.org/web/20200411154603/
www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-
mesh-messaging-app-china-cant-block-usage-up-3685/

46. Magaisa, A.T.: https://twitter.com/wamagaisa/status/1288817111796797440.
http://archive.today/DVRZf, July 2020

47. Mihindukulasuriya, R.: FireChat, Bridgefy see massive rise in downloads amid
internet shutdowns during CAA protests, December 2019. http://web.archive.org/
web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-
rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/

48. Mohan, P.: How the internet shutdown in Kashmir is splintering India’s
democracy, March 2020. http://web.archive.org/web/20200408111230/https://
www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-
splintering-indias-democracy

https://arstechnica.com/features/2020/08/bridgefy-the-app-promoted-for-mass-protests-is-a-privacy-disaster/
https://arstechnica.com/features/2020/08/bridgefy-the-app-promoted-for-mass-protests-is-a-privacy-disaster/
https://doi.org/10.1007/978-3-030-04762-7_4
https://doi.org/10.1007/978-3-030-04762-7_4
https://doi.org/10.1016/j.cose.2017.03.008
https://doi.org/10.1016/j.cose.2017.03.008
https://hypelabs.io/documents/Hype-SDK.pdf
https://hypelabs.io/documents/Hype-SDK.pdf
https://hypelabs.io
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313
https://github.com/securing/docs/raw/master/whitepaper.pdf
https://github.com/securing/docs/raw/master/whitepaper.pdf
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.1007/978-3-540-45238-6_33
https://web.archive.org/web/20200411154603/www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://twitter.com/wamagaisa/status/1288817111796797440
http://archive.today/DVRZf
http://web.archive.org/web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/
http://web.archive.org/web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/
http://web.archive.org/web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/
http://web.archive.org/web/20200408111230/https://www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-splintering-indias-democracy
http://web.archive.org/web/20200408111230/https://www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-splintering-indias-democracy
http://web.archive.org/web/20200408111230/https://www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-splintering-indias-democracy

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 397

49. Mudzingwa, F.: This offline messenger that might keep you connected if the govt
decides to shut down the internet, August 2020. https://web.archive.org/web/
20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-
that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/

50. News, H.: Hong Kong protestors using Bridgefy’s Bluetooth-based mesh network
messaging app, August 2019. https://web.archive.org/web/20191016114954/news.
ycombinator.com/item?id=20861948

51. Ng, B.: Bridgefy: a startup that enables messaging without internet, August
2019. http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/
article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-
internet

52. Open Garden: FireChat, October 2019. http://web.archive.org/web/
20200111174316/https://www.opengarden.com/firechat/

53. Open Mesh: B.A.T.M.A.N. Advanced (2020). https://www.open-mesh.org/
projects/batman-adv/wiki

54. Purohit, K.: Whatsapp to Bridgefy, what Hong Kong taught India’s leaderless
protesters, December 2019. http://web.archive.org/web/20200406103939/https://
www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-
hong-kong-taught-indias-leaderless

55. Rogers, M., Saitta, E., Grote, T., Dehm, J., Wieder, B.: Briar, March 2018. https://
web.archive.org/web/20191016114519/briarproject.org/

56. Ryan, M.: Bluetooth: with low energy comes low security. In: Proceedings of the
7th USENIX Conference on Offensive Technologies (WOOT 2013), p. 4. USENIX
Association, USA (2013)

57. Schwartz, L.: The world’s protest app of choice, August 2020. https://restofworld.
org/2020/the-worlds-protest-app-of-choice/, http://archive.today/5kOhr

58. SIG, B.: Mesh profile specification 1.0.1, January 2019. https://www.bluetooth.
com/specifications/mesh-specifications/

59. Silva, M.D.: Hong Kong protestors are once again using mesh networks to preempt
an internet shutdown, September 2019. http://archive.today/2019.09.20-220517/
https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-
shutdown/

60. Sivakumaran, P., Blasco, J.: A study of the feasibility of co-located app attacks
against BLE and a large-scale analysis of the current application-layer security
landscape. In: Heninger, N., Traynor, P. (eds.) USENIX Security 2019, pp. 1–18.
USENIX Association, August 2019

61. Skylot: Jadx - Dex to Java decompiler, v1.1.0, December 2019. https://github.
com/skylot/jadx

62. SMEX: Lebanon protests: how to communicate securely in case of a network dis-
ruption, October 2019. https://smex.org/lebanon-protests-how-to-communicate-
securely-in-case-of-a-network-disruption-2/, http://archive.today/hx1lp

63. Software Freedom Law Centre, India: Internet shutdown tracker (2020). https://
internetshutdowns.in/

64. Stein, W., et al.: Sage mathematics software version 9.0. The Sage Development
Team (2019). http://www.sagemath.org

65. Subnodes: Subnodes (2018). http://subnodes.org/
66. Sullivan, N., Turner, S., Kaduk, B., Cohn-Gordon, K., et al.: Messaging Layer

Security (MLS), November 2018. https://datatracker.ietf.org/wg/mls/about/

https://web.archive.org/web/20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/
https://web.archive.org/web/20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/
https://web.archive.org/web/20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/
https://web.archive.org/web/20191016114954/news.ycombinator.com/item?id=20861948
https://web.archive.org/web/20191016114954/news.ycombinator.com/item?id=20861948
http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-internet
http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-internet
http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-internet
http://web.archive.org/web/20200111174316/https://www.opengarden.com/firechat/
http://web.archive.org/web/20200111174316/https://www.opengarden.com/firechat/
https://www.open-mesh.org/projects/batman-adv/wiki
https://www.open-mesh.org/projects/batman-adv/wiki
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
https://web.archive.org/web/20191016114519/briarproject.org/
https://web.archive.org/web/20191016114519/briarproject.org/
https://restofworld.org/2020/the-worlds-protest-app-of-choice/
https://restofworld.org/2020/the-worlds-protest-app-of-choice/
http://archive.today/5kOhr
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/
http://archive.today/2019.09.20-220517/https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-shutdown/
http://archive.today/2019.09.20-220517/https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-shutdown/
http://archive.today/2019.09.20-220517/https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-shutdown/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://smex.org/lebanon-protests-how-to-communicate-securely-in-case-of-a-network-disruption-2/
https://smex.org/lebanon-protests-how-to-communicate-securely-in-case-of-a-network-disruption-2/
http://archive.today/hx1lp
https://internetshutdowns.in/
https://internetshutdowns.in/
http://www.sagemath.org
http://subnodes.org/
https://datatracker.ietf.org/wg/mls/about/

398 M. R. Albrecht et al.

67. Teknologiia Lebanon: Lebanese protesters are using this ‘Bridgefy’ messaging app
– what is it? January 2020. https://medium.com/@teknologiialb/lebanese-
protesters-are-using-this-bridgefy-messaging-app-what-is-it-74614e169197,
https://archive.vn/udqly

68. The Stranger: How to message people at protests even without internet access, June
2020. https://www.thestranger.com/slog/2020/06/03/43829749/how-to-message-
people-at-protests-even-without-internet-access, http://archive.is/8UrWQ

69. Twitter: Bridgefy search, June 2020. https://twitter.com/search?q=bridgefy,
http://archive.today/hwklY

70. Twitter - B1O15J, August 2020. https://twitter.com/B1O15J/status/
1294603355277336576, https://archive.vn/dkPqD

71. Twitter - Bridgefy, November 2019. https://twitter.com/bridgefy/status/
1197191632665415686, http://archive.today/aNKQy

72. Twitter - Bridgefy, December 2019. https://twitter.com/bridgefy/status/
1209924773486170113, http://archive.today/aQZDL

73. Twitter - Bridgefy, January 2020. https://twitter.com/bridgefy/status/
1216473058753597453, http://archive.today/x1gG4

74. Twitter - Bridgefy, June 2020. https://twitter.com/bridgefy/status/
1268905414248153089. http://archive.today/odSbW

75. Twitter - Bridgefy, July 2020. https://twitter.com/bridgefy/status/
1287768436244983808, https://archive.vn/WQfZm

76. Twitter - Bridgefy, June 2020. https://twitter.com/bridgefy/status/
1268015807252004864, http://archive.today/uKNRm

77. Twitter - Bridgefy, August 2020. https://twitter.com/bridgefy/status/
1289576487004168197, https://archive.vn/zbxgR

78. Twitter - Bridgefy, August 2020. https://twitter.com/bridgefy/status/
1292880821725036545, https://archive.vn/tKr0t

79. Twitter - Bridgefy, June 2020. https://twitter.com/bridgefy/status/
1267469099266965506, http://archive.today/40pzC

80. Uher, J., Mennecke, R.G., Farroha, B.S.: Denial of sleep attacks in Bluetooth
Low Energy wireless sensor networks. In: Brand, J., Valenti, M.C., Akinpelu, A.,
Doshi, B.T., Gorsic, B.L. (eds.) 2016 IEEE Military Communications Conference,
MILCOM 2016, Baltimore, MD, USA, 1–3 November 2016, pp. 1231–1236. IEEE
(2016). https://doi.org/10.1109/MILCOM.2016.7795499

81. Wakefield, J.: Hong Kong protesters using Bluetooth Bridgefy app, Septem-
ber 2019. http://web.archive.org/web/20200305062625/https://www.bbc.co.uk/
news/technology-49565587

82. Zuo, C., Wen, H., Lin, Z., Zhang, Y.: Automatic fingerprinting of vulnerable BLE
IoT devices with static UUIDs from mobile apps. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1469–1483.
ACM (2019)

https://medium.com/@teknologiialb/lebanese-protesters-are-using-this-bridgefy-messaging-app-what-is-it-74614e169197
https://medium.com/@teknologiialb/lebanese-protesters-are-using-this-bridgefy-messaging-app-what-is-it-74614e169197
https://archive.vn/udqly
https://www.thestranger.com/slog/2020/06/03/43829749/how-to-message-people-at-protests-even-without-internet-access
https://www.thestranger.com/slog/2020/06/03/43829749/how-to-message-people-at-protests-even-without-internet-access
http://archive.is/8UrWQ
https://twitter.com/search?q=bridgefy
http://archive.today/hwklY
https://twitter.com/B1O15J/status/1294603355277336576
https://twitter.com/B1O15J/status/1294603355277336576
https://archive.vn/dkPqD
https://twitter.com/bridgefy/status/1197191632665415686
https://twitter.com/bridgefy/status/1197191632665415686
http://archive.today/aNKQy
https://twitter.com/bridgefy/status/1209924773486170113
https://twitter.com/bridgefy/status/1209924773486170113
http://archive.today/aQZDL
https://twitter.com/bridgefy/status/1216473058753597453
https://twitter.com/bridgefy/status/1216473058753597453
http://archive.today/x1gG4
https://twitter.com/bridgefy/status/1268905414248153089
https://twitter.com/bridgefy/status/1268905414248153089
http://archive.today/odSbW
https://twitter.com/bridgefy/status/1287768436244983808
https://twitter.com/bridgefy/status/1287768436244983808
https://archive.vn/WQfZm
https://twitter.com/bridgefy/status/1268015807252004864
https://twitter.com/bridgefy/status/1268015807252004864
http://archive.today/uKNRm
https://twitter.com/bridgefy/status/1289576487004168197
https://twitter.com/bridgefy/status/1289576487004168197
https://archive.vn/zbxgR
https://twitter.com/bridgefy/status/1292880821725036545
https://twitter.com/bridgefy/status/1292880821725036545
https://archive.vn/tKr0t
https://twitter.com/bridgefy/status/1267469099266965506
https://twitter.com/bridgefy/status/1267469099266965506
http://archive.today/40pzC
https://doi.org/10.1109/MILCOM.2016.7795499
http://web.archive.org/web/20200305062625/https://www.bbc.co.uk/news/technology-49565587
http://web.archive.org/web/20200305062625/https://www.bbc.co.uk/news/technology-49565587

	Mesh Messaging in Large-Scale Protests: Breaking Bridgefy
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Reverse Engineering
	2.2 Primitives Used
	2.3 Related Work
	2.4 Alternative Mesh Applications

	3 Bridgefy Architecture
	3.1 Bluetooth Messages
	3.2 Handshake Protocol
	3.3 Routing via the Bridgefy Server

	4 Attacks
	4.1 Privacy
	4.2 Authenticity
	4.3 Confidentiality
	4.4 Denial of Service

	5 Discussion
	5.1 Responsible Disclosure

	References

