
Leveraging Smart Contracts for Secure and
Asynchronous Group Key Exchange Without

Trusted Third Party
Victor Youdom Kemmoe , Yongseok Kwon , Rasheed Hussain , Senior Member, IEEE,

Sunghyun Cho , and Junggab Son , Senior Member, IEEE

Abstract—GroupKeyExchange (GKE) is an important tool to develop securemulti-user applications such as group textmessages, ad-hoc

networks, and so on. Most of the currently deployedGKE schemes are synchronous, i.e., they require all the participants to be online during

their execution. However, withmore battery-powered devices being used in such applications, the synchronicity requirement is challenging

to fulfill. To fill the gaps, asynchronousGKE schemes have been introduced in the literature. Nevertheless, the currently available

asynchronous and synchronousGKE schemes rely on Trusted Third Parties (TTPs) for key establishment andmanagement. To this end,

reliance on TTPs is a serious shortcoming since TTPs are well known to be the single point of failure. Furthermore, the existingGKE

schemes require participants to perform all computations, which can degrade the performance of resource-constrained devices such as

Internet of Things (IoT) devices. To solve these problems, in this paper, we proposeanasynchronousGKEscheme that uses blockchain and

smart contracts to store the security keys-relatedmaterial and reduce the computational load of the participants. Furthermore, our proposed

scheme provides Perfect Forward Secrecy (PFS) and Post-Compromised Security (PCS). Our implementation onEthereumshows that the

proposed scheme can scale tomore than 100 participantswhen combinedwith a distributed storage system.

Index Terms—Asynchronous GKE, blockchain, group key exchange (GKE), Internet of Things, perfect forward secrecy (PFS),

post-compromised security, security, smart contract

Ç

1 INTRODUCTION

GROUP Key Exchanges (GKEs) are protocols that allow two
ormore participants to agree on a common secret key (ses-

sion key) over an insecure communication channel in the net-
work in such a way that one participant cannot derive the
session key without the contribution of others. If a GKE proto-
col ensures that only involved participants can derive the ses-
sion key, it is said to be authenticated. GKE is one of the core
components in the security ofmulti-user systems such as group
text message, ad-hoc network applications, Internet of Things

(IoT), and so on. To date, many synchronous GKE schemes
have been introduced in the literature [2], [3]. One of the limita-
tions of the synchronous schemes is that they require all the
participants to be always online during the execution of the
GKE protocol. However, this requirement is difficult to fulfill
in the presence of abundance of battery-powered devices that
can enter into hibernation mode to prolong their lifetime [4].
Therefore, such resource-constrained devices may not always
be online. In addition, these schemes require participants to
remember multiple keys and to carry-out all the compute-
intensive operations, which can be burdensome for computa-
tionally-limited devices such as IoT devices. To address this
issue, asynchronous GKE schemes (e.g., [5], [6], [7]) have been
proposed in the literature that allow someparticipants to be off-
line during the execution of the protocol. These offline partici-
pants can come online later at some point and derive the
session key. However, such schemes still require participants
to carry out all the computations. It is alsoworth noting that the
existing synchronous and asynchronous GKE schemes rely on
Trusted Third Parties (TTPs) such as Certificate Authorities
(CAs) to allow the participants to authenticate each other and
relay messages. Such reliance on TTPs is another significant
drawback of the existingGKE schemes. For instance, if a TTP is
not available during the execution of a GKE scheme, it can ren-
der availability problem for the underlying application and
become a single point of failure. Furthermore, TTPs are vulner-
able to attacks such as rogue certificate [8] and key compromise
impersonation [9] that allow attackers to impersonate them.

In addition, a GKE scheme needs to support the follow-
ing two important security requirements when it is used in

� Victor Youdom Kemmoe is with the Department of Computer Science,
Brown University, Providence, RI 02906 USA.
E-mail: victor_youdom_kemmoe@brown.edu.

� Yongseok Kwon and Sunghyun Cho are with the Department of Computer
Science and Engineering, Hanyang University, Seoul 133-791, Republic
of Korea. E-mail: {totoey200, chopro}@hanyang.ac.kr.

� Rasheed Hussain is with the Department of Electrical and Electronic Engi-
neering, University of Bristol, Bristol BS8 1TH, U.K.
E-mail: rasheed.hussain@bristol.ac.uk.

� Junggab Son is with the Department of Computer Science, University of
Nevada, Las Vegas, NV 89557 USA. E-mail: junggab.son@unlv.edu.

Manuscript received 15 June 2021; revised 15 April 2022; accepted 6 June
2022. Date of publication 12 July 2022; date of current version 11 July 2023.
This work was supported in part by theMinistry of Science, ICT (MSIT), Korea,
through High-Potential Individuals Global Training Program under Grant
2021-0-01547-00 supervised by the Institute for Information and Communica-
tions Technology Planning and Evaluation (IITP), and in part by IITP, Korea
Government (MSIT) under Grant 2021-0-00368, for the Development of the
6G Service Targeted AI/ML-Based Autonomous-Regulating Medium Access
Control (6G STAR-MAC).
(Corresponding Author: Junggab Son.)
Digital Object Identifier no. 10.1109/TDSC.2022.3189977

3176 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-1887-6396
https://orcid.org/0000-0003-1887-6396
https://orcid.org/0000-0003-1887-6396
https://orcid.org/0000-0003-1887-6396
https://orcid.org/0000-0003-1887-6396
https://orcid.org/0000-0002-8202-2793
https://orcid.org/0000-0002-8202-2793
https://orcid.org/0000-0002-8202-2793
https://orcid.org/0000-0002-8202-2793
https://orcid.org/0000-0002-8202-2793
https://orcid.org/0000-0002-3771-7537
https://orcid.org/0000-0002-3771-7537
https://orcid.org/0000-0002-3771-7537
https://orcid.org/0000-0002-3771-7537
https://orcid.org/0000-0002-3771-7537
https://orcid.org/0000-0002-1847-6088
https://orcid.org/0000-0002-1847-6088
https://orcid.org/0000-0002-1847-6088
https://orcid.org/0000-0002-1847-6088
https://orcid.org/0000-0002-1847-6088
https://orcid.org/0000-0002-6206-083X
https://orcid.org/0000-0002-6206-083X
https://orcid.org/0000-0002-6206-083X
https://orcid.org/0000-0002-6206-083X
https://orcid.org/0000-0002-6206-083X
mailto:victor_youdom_kemmoe@brown.edu
mailto:totoey200@hanyang.ac.kr
mailto:chopro@hanyang.ac.kr
mailto:rasheed.hussain@bristol.ac.uk
mailto:junggab.son@unlv.edu

a vulnerable environment where devices are more easily
compromised than desktop computers, e.g., IoT environ-
ment [10]. The first requirement is the Perfect Forward
Secrecy (PFS), i.e., the compromise of the long-term identity
and key of a participant does not reveal the previously
established session keys [11], and the second requirement is
the Post-Compromise Security (PCS), i.e., participants can
re-establish the security of a session even after one group
member was compromised [12]. A failure to satisfy these
additional requirements will result in creating critical vul-
nerabilities such as cloning attack [13]. Therefore, it is
imperative to develop an efficient and robust GKE mecha-
nism to fulfill these requirements.

Our Contributions.Our work aims to answer the following
question: is it possible to construct a secure asynchronous GKE
scheme that does not rely on a TTP, and that can reduce the compu-
tational load of the participants? To answer this question, in
this paper, we present an asynchronous GKE scheme that
leverages blockchain and smart contracts to store the security
key-related materials and reduce participants’ computa-
tional workload. In contrast to the traditional TTPs, block-
chain provides a distributed architecture that easily allows
to ensure the integrity of data stored on it and is resilient
against attacks such as Denial of Service (DoS) [14], [15]. Fur-
thermore, with the support of smart contracts, one can imple-
ment the logic of a TTP on a blockchain without the risk of
attackers spoofing the smart contracts [16]. Our contribu-
tions can be summarized as follows:

� We propose an asynchronous GKE protocol that uses
blockchain to store the security key-related material
and uses smart contracts to reduce the number of
operations that the participants must perform. The
proposed protocol ensures PFS and PCS and allows
the addition and removal of group members.

� We analyse the security of the proposed protocol and
show that an attacker cannot obtain the session key
from the key materials stored in the blockchain and
that our protocol is secure under the standard attacker
model.

� We present two implementations of our protocol
based on Ethereum [17]. In the first implementation,
all key-related materials are stored in the blockchain
while for the second implementation, only the key-
related materials necessary for the smart contracts
are store on the blockchain with the rest kept in a dis-
tributed storage.

Organization of the Paper. In Section 2, we provide a tech-
nical overview of our solution. We define the important
notations and introduce the readers to some necessary back-
ground in Section 3. The baseline system and adversarial
models for based our proposed scheme are discussed in Sec-
tion 4, and in Section 5, we give a detailed description of our
proposed scheme. In Section 6, we perform a security analy-
sis, and in Section 7, we describe the implementation of our
proposed scheme. In Section 8, we present the related works
followed by conclusions in Section 9.

2 OVERVIEW AND BACKGROUND

In this section, we provide a technical overview of our pro-
posed smart contracts-based asynchronousGKEmechanism.

Fig. 1 depicts a naı̈ve approach in which an initiator
sends a request to form a group with n responders and a
random coin to a smart contract. The smart contract uses
the random coin to compute the group key and then the ini-
tiator and the responders come online and request the
group key from the smart contract. However, such a con-
struction is fundamentally insecure. Since the instructions
of a smart contract can be accessed by anyone, an attacker
who obtains the random coin sent by the initiator will be
able to reproduce the computations performed by the smart
contract and obtain the group key. Also, one could simply
read the state of the smart contract and get the computed
group key. Furthermore, having the initiator being the only
one providing the random coin does not satisfy the defini-
tion of GKE since all group members must contribute.

Using 2-Party Key Exchange. We need all the group mem-
bers to contribute key materials to the GKE, but as we can
see from Fig. 1, we consider the initiator to be the only one
online during the first execution phase of the protocol, and
since the responders are offline, they cannot contribute. To
solve this issue, we borrow the idea from Cohn-Gordon
et al. [7] where a 2-party key exchange (2KE) is used to allow
the initiator to pre-compute the contributions of responders.
In brief, following Fig. 2, before the execution of the proto-
col, group members come online and upload ephemeral
keys to the smart contract. After that, the initiator comes
online and requests the ephemeral keys uploaded by the
responders. Once the initiator has those ephemeral keys, it
executes an asynchronous 2KE between itself and each
responder and then it considers the results as contributions
from the responders. Next, after sampling its contribution,
the initiator sends a request to compute the group key to the
smart contract with its own and responders’ contribution as
input. The use of a 2KE prevents an attacker that accesses
keys stored in the smart contract from computing the group
key before the initiator makes its request. Furthermore, it
allows the responders to check that their contribution was
included by executing the 2KE with the same inputs as the
initiator and use the results in the re-execution of the
protocol.

Using Homomorphic Encryption. Simply using a 2KE does
not prevent an attacker from seeing the group key that will be
computed after the initiator makes its request. To solve this
issue, we use a Homomorphic Encryption (HE) scheme. (An
encryption scheme G ¼ ðG:Enc;G:DecÞ is homomorphic if it
accepts an operator � such that for two messages m1;m2 2
M, G:Encðm1Þ � G:Encðm2Þ ¼ G:Encðm1 �m2Þ, where M is
the message space of G). Using an HE scheme, the initiator

Fig. 1. Naı̈ve Group Key Exchange (GKE) protocol.

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3177

encrypts the group members’ contribution before sending
them to the smart contract. Then, the smart contract com-
putes the group key using the encrypted contributions.
However, because the computed group key is encrypted, the
responders will need the decryption key. To solve this issue,
the initiator derives a symmetric encryption key for each
responder using the responders’ contribution. Then, it uses
those symmetric keys to encrypt the key that will allow the
responders to obtain the group key. Hence, in addition to
sending the encrypted contribution, the initiator also sends
the encrypted key in the request sent to the smart contract.

Achieving PFS and PCS. Even though the previous ap-
proach, i.e., integrating 2KE and HE into smart contracts,
seems to be effective, it cannot guarantee PFS and PCS. To
satisfy PFS, we use ephemeral keys and secret nonces. The
computation of the session key requires the use of ephemeral
keys and secret nonces in addition to a long-term key. Once
the computation is done, all ephemeral keys used in the com-
putation are erased from participants’ devices. Therefore, a
comprise of long-term keys will not be enough for an adver-
sary to get previously established session keys. To satisfy
PCS, we devise a key update procedure that allows the par-
ticipants to update their local state and the session key. If an
adversary compromises the local state of a participant but
allows that participant to successfully execute the key update
procedure (by not interfering with the transmitted mes-
sages), then the participant’s local state and the session key
will be updated to new values, unknown to the adversary.
Hence, the security of the group can be reestablished.

3 PRELIMINARIES

In this section, we discuss the preliminaries that will be
helpful in understanding our proposed mechanism.

3.1 Notations

For an elliptic curve E defined over a finite field Fp follow-
ing the equation E : y2 ¼ x3 þ axþ b, where a; b 2 Fp and p
is a large prime, we denote by EðFpÞ an additive abelian

group defined over E. We use Pr½X� to denote the probabil-
ity that an event X takes place and Pr½X : Y � to denote the
probability that event Y happens given that event X occurs.
We use x $ X to denote that x is sampled uniformly at ran-
dom from a set X . Any function f : N! R is defined as neg-
ligible if for all constant c 2 R, there exists an n0 2 N such
that for all n � n0, fðnÞ � n�c. We use neglð:Þ to denote an
undefined negligible function. For a user ui, we use ski to
denote its long-term private key and pki its long-term public
key. We use bolded notations (A) to denote sets of specific
elements.We make use of a Key Derivation Function (KDF)
that will be interpreted as a random oracle (RO) [7].

3.2 Digital Signature

Definition 1. A digital signature scheme is a triplet of probabi-
listic polynomial time algorithms F ¼ ðGen;Sign;VerifyÞ with
the following properties:

� F:Genð1�Þ ! ðsk; pkÞ. On the input of a security
parameter 1�, the key generation algorithm F:Gen out-
puts a private-public key pair ðsk; pkÞ.

� F:Signðsk;mÞ ! s. On the input of a private key sk
and a message m, the signature algorithm F:Sign out-
puts a signature s.

� F:Verifyðpk;m; sÞ ! b. On the input of a public key
pk, a message m, and a signature s, the verification
algorithm F:Verify outputs a bit b 2 f0; 1g. If b ¼ 1,
then s was generated by applying F:Sign on m with
the secret key related to pk.

A digital signature scheme F is ðtCMA; �CMAÞ�Chosen Mes-
sage Attack (CMA) secure if the probability that an adver-
sary A running in time tCMA and having access to pk and
F:Sign outputs a message-signature pair ðm; sÞ such that
F:Verifyðpk;m; sÞ ¼ 1 is less than or equal to �CMA, i.e.,

Pr½ðm; sÞ AF:Signð1�; pkÞ : F:Verifyðpk;m; sÞ ¼ 1� � �CMA:

3.3 Blockchain and Smart Contract

Blockchain. A blockchain, in essence, is a distributed data
structure similar to a linked-list, made of blocks (or nodes)
and in which a block has a field that contains the hash value
of the block that precedes it, that field serves as a link. A
blockchain is maintained by a set of independent users who
decide (by using a consensus algorithm) what block to add
to the blockchain. In general, beside the field serving as link,
a block contains a set of transactions, and each transaction is
signed (using a digital signature scheme) by its issuer. Block-
chain has some salient features such as persistence (once a
block is added to the blockchain, it cannot be removed), and
public verifiability (anyone can verify the integrity of the
blockchain) that makes it attractive to develop applications
that do not rely on trusted third parties [18], [19].

Smart Contract.A Smart Contract (SC) is a programwhose
instructions are stored in a blockchain and are publicly acces-
sible. To execute a functionality of a SC, one has to send a
transaction that references the required functionality to the
blockchain [17], [20]. Once in the blockchain, that transaction
will be executed by the users who maintain the blockchain,
and if the execution is valid, the transaction that triggered it,
will be included in the blockchain. Furthermore, the overall

Fig. 2. Abstract protocol.

3178 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

state of the blockchain will be updated. In addition, an SC

can have an internal state or memory that also resides on the
blockchain and is part of the blockchain’s state. Relying on
the blockchain means that anyone can explore old blocks to
access previous internal states of an SC.

For the rest of the paper, we assume all transactions sent
to a blockchain to be signed by their issuers using a CMA
secure digital signature scheme, i.e., each transaction is of
the form tx ¼ fpayload; sg.

3.4 Hardness Assumption

Given EðFpÞ an elliptic curve group with base point G 2
EðFpÞ and prime order n, we consider a Probabilisitic Poly-
nomial-Time (PPT) adversaryA.
Hardness 1 (Discrete Logarithm). Let ðx; yÞ Genð1�;GÞ

be a function that takes as inputs a security parameter 1�, the
base point G and outputs x 2 Z�n and y ¼ x:G 2 EðFpÞ. Given
1�; y and G as inputs, the probability that A outputs x0 such
that x0 ¼ x should be negligible. More specifically

Pr½x0 Að1�; y; GÞ : x0 ¼ x� � neglð�Þ:

Hardness 2 (Decisional Diffie-Hellman). Given a; b 2 Z�n,
let m0 ða:G; b:G; ab:GÞ and m1 ða:G; b:G; c:GÞ, with
c $ Z�n. The probability that A distinguishes m0 from m1

should be negligible, i.e.,

Pr½1 Aðm0Þ� � Pr½1 Aðm1Þ�j j � neglð�Þ;

where � is the security parameter that was used to generate
EðFpÞ.

3.5 ElGamal Encryption Over Elliptic Curve

Definition 2. Following the construction of El Gamal [21], ElGa-
mal Encryption scheme over Elliptic Curve is a triplet of probabi-
listic polynomial time algorithms ElGamal ¼ ðSetup;Enc;DecÞ
with the following properties:

� ElGamal:Setupð1�Þ ! ðn;G;EðFpÞ; pk; skÞ. On the
input of a security parameter 1�, the setup algorithm
ElGamal:Setup generates a group EðFpÞ with base
point G and prime order n. Next, it generates a public-
private key pair ðpk; skÞ such that sk ¼ a 2 Z�n and
pk ¼ a:G 2 EðFpÞ. It outputs the tuple ðn;G;EðFpÞ;
pk; skÞ.

� ElGamal:Encðpk;mÞ ! ct. The encryption algorithm
ElGamal:Enc takes as input a public key pk and amessage
m 2 EðFpÞ. It samples at random a secret value r 2 Z�n
and computes c1 ¼ r:G. Finally, it computes c2 ¼
mþ ðr:pkÞ and outputs a ciphertext ct ¼ ðc1; c2Þ:

� ElGamal:Decðsk; ctÞ ! m. On the input of a secret key
sk and a ciphertext ct, first the decryption algorithm
ElGamal:Dec computes k ¼ sk:c1. Then, it computes
m ¼ c2 � k.

ElGamal has a homomorphic property over addition.
Given two ciphertexts ct and ct0 encrypted using the same
public key pk

ctþ ct0 ¼ ðc1 þ c01; c2 þ c02Þ
¼ ððrþ r0Þ:G;M þM 0 þ ðrþ r0Þ:pkÞ:

For the rest of the paper, instead of generating r during
the execution of ElGamal:Enc, we generate r before its execu-
tion, and use the notation ElGamal:Encðr;pkÞðmÞ to denote the
encryption of the message m using the secret value r and
the public key pk. Furthermore, during the execution of
ElGamal:Enc, we make the use of a collision-resistant hash
functionH 0 : f0; 1g� ! EðFpÞ to map binary strings to group
elements in EðFpÞ.

3.6 Asynchronous Biparty Key Exchange

Definition 3. An asynchronous biparty key exchange is a protocol
pABKE between an initiator (online) and a responder (offline) that
allows both to generate a common session key. It takes the secret
key of the initiator skI , the public key of the responder pkR, a
secret ephemeral key of the initiator xI , and a public ephemeral
key of the responder yR as input such that when reversing the
roles, the following statement is verified

pABKEðskI; pkR; xI; yRÞ ¼ pABKEðskR; pkI; xR; yIÞ ¼ a:

For our proposed scheme, we assume pABKE to be a strong
one-round authenticated key exchange protocol. Examples
of such protocol can be found in the literature [22], [23].

4 SYSTEM AND ADVERSARIAL MODELS

In this section, we present our system and adversarial mod-
els based on the multi-stage key exchange model of Fishclin
et al. [24] and the group key exchange model of Cohn-Gor-
don et al. [7].

4.1 System Model

System Participants. Let U denotes the set of all users that
participate in the system. We use the notation u 2 U to
denote a participant in the set of all participants and ui 2 U
to denote a participant at position i 2 N in a group. After
creating an account on the blockchain, a user u obtains a
long-term private-public key pair ðsk; pkÞ.

Smart contract. Participants interact with smart contracts
(SCs) that are stateful to manage groups. The states and set
of instructions of SCs can be accessed by anyone. For sim-
plicity, we assume that an SC can only be used to manage
one group.

Miners. The blockchain on which SCs are deployed is
maintained by a set of independent miners/computers. We
assume that miners are honest, i.e., they process transac-
tions in the order they received them. Sessions. Users can
run multiple instances of the proposed scheme at the same
time with different group members. We use the term session
to denote an instance between two or more users. During a
session’s lifetime, its state can be updated based on the mes-
sages issued by the group members. We refer to those
points of update as stages. We use Pt

u to denote the tth ses-
sion of user u and dPt

u to denotes the tth session at stage d of
user u, with t; d 2 N.

For each session Pt
u, its state contains the following

information:

� sk, the long-term key of u, instance’s owner.
� ðX;YÞ, a pair of sets. X is the set of non-used secret

ephemeral keys, and Y is the set of non-used public
ephemeral keys.

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3179

� blkNum 2 N, the block number that references the last
block containing the SC’s state that u read.

� SCID, the identifier of the smart contract used to han-
dle the group.

� status 2 frunning; accept; rejectg, the execution sta-
tus of the instance. If status ¼ accept, then the session
key was successfully derived.

� role 2 finitiator; responderg, the role of u in the ses-
sion. If role ¼ initiator, then u is the user that initi-
ated the group’s creation and is assumed to be the
group administrator. Else, if role ¼ responder, then u
is a user that joined a group.

� idx 2 N, the index/position of u in the group.
� h 2 EðFpÞ, a hash of u’s contribution computed using

H 0.
� k 2 Z�n, a secret value used to obtain the pre-group

key computed by the smart contract.
� Mbrs, the list of group members.
� ssk 2 f?g [f0; 1g�, the group (session) key to be

used.
� d 2 N, the stage of the session.

4.2 Adversarial Model

In this subsection, we define the security goals we aim to
achieve and the capabilities of an adversary.

Key Independence. The knowledge of a session key must
not endanger the security of another session key. Specifi-
cally, for any instance Pt

u, each session key ssk established
during any stage dPt

u must be indistinguishable from
random.

Perfect Forward Secrecy (PFS). Session keys that were
established prior to the corruption of a session’s state must
remain secure. More precisely, for all t 2 N, if for d0 2 N,
d0Pt

u is corrupted, then the session key in dPt
u, for 0 � d <

d0, must remain secure.
Post Compromise Security (PCS). If a session’s state of a

user u has been compromised, members in that session
should regain a security guarantee if they successfully exe-
cute the key update process. Specifically, if an attacker suc-
cessfully compromises the state of a session d0Pt

u but allows
d0þiPt

u to accept after a key update procedure, then the ses-
sion key in dPt

u is secure, where d � d0 þ i.
Adversary Queries. We consider a PPT adversary A that

completely controls the network with access to the follow-
ing queries:

� NewSessionðfu0; u1; . . . ; umg; admin;SCIDÞ: It executes
the Group Creation process between unused instances
of users in the set fu0; u1; . . . ; umg, where the admin-
istrator is chosen through the admin variable and the
Group Key SC (GSKC) to be used through the SCID

variable. Each input of NewSession is selected by the
adversary, and at the end of its execution, its output
trace is sent to the adversary.

� SendðPt
u; dÞ: It sends a message d to an instance Pt

u. If
d is well formed, u processes it according to the pro-
tocol. Otherwise, u rejects d. If d leads Pt

u to accept
after processing, u updates the state of Pt

u accord-
ingly. This query simulates the possibility for the
adversary to tamper messages sent over the network
or to mimic the blockchain.

� RevealðdPt
uÞ: If dPt

u:ssk 6¼?; it returns dPt
u:ssk to the

adversary. This query characterizes a leakage of the
session key of a stage d to the adversary.

� CorruptðdPt
uÞ : This query simulates a total corruption

of the session state. It returns all the values stored in
dPt

u’s state except the session key.
� TestðdPt

uÞ: If dPt
u:status ¼ accept, a bit b $ f0; 1g is

selected, and if b ¼ 1, dPt
u:ssk is returned, else if b ¼

0, a string of bits selected uniformly at random is
returned.

5 ASYNCHRONOUS GROUP KEY EXCHANGE

In this section, we provide a detailed description of our pro-
posed scheme. First, we give a description of the SC and
functionalities provided to users that are used by our
scheme, and second, we give a description of the main oper-
ations of our proposed GKE scheme.

5.1 Components of the Proposed Scheme

Group Key SC. This is the SC used to manage the group. A
complete description of the GKSC is provided in Fig. 3. First,
it has an internal state St that holds the following elements:

� grpOP 2 f?g [fCRT;UPD;ADD;RMg is a variable that
keeps track of which operation was performed on
the group. CRT refers to the creation of a group, UPD
is the update of the group key, ADD is the addition of
a new member, and RM refers to the removal of a
member.

� eKeysMap : EðFpÞ ! ½EðFpÞ�‘ is a map that links a
public key pk with a set of ephemeral public keys Y,
where jYj ¼ ‘.

� admin 2 f?g [EðFpÞ is a variable that holds the pub-
lic key of the group administrator.

� gKey is a set with cardinality jgKeyj ¼ 2. It holds the
group pre-key.

� encK is a set that holds encrypted secret value k for
each group member.

� encS is a set that holds encrypted secret value s for
each group member.

� usedEKeys is a set that holds the ephemeral public
keys that were used during an operation.

Second, it consists of five public functions PostEKeys,
CreateGrp, UpdGKey, AddMbr, and GetEKey that modify the
contract state St and listen to the transactions �txPostEKeys,
�txCreateGrp, �txUpdGkey, �txAddMbr, �txGetEKey, respectively, and two
public functions GetGKey, GetGKeyMat that read the contrac-
t’s state stored at the most current block. Following is the
further description of each function:

� PostEKeys allows a user to store a set of ephemeral
public keys in St:eKeysMap. It is activated by a trans-
action �txPostEKeys.

� CreateGrp allows a user (the group administrator) to
create a group or remove a group member. More specifi-
cally, if St:grpOP ¼ CRT, CreateGrp computes and
stores the different key materials that will be used to
derive the initial group key. Else, if St:grpOP ¼ RM,
CreateGrp updates different key materials to reflect
the removal of members. It is activated by a transac-
tion �txCreateGrp.

3180 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

� UpdGKey allows a group member to update the val-
ues of sets St:encK and St:usedEKeys and the group
pre-key St:gKey. It is activated by a transaction
�txUpdGKey.

� AddMbr enables a group administrator to add new
group member. More specifically, it allows the group
administrator to update the key materials stored in
St such that all members including the new one, can

Fig. 3. Full group key smart contract (GKSC).

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3181

obtain the new group key. It is activated by a transac-
tion �txAddMbr.

� GetEKey reads St at the most current block and
returns an unused ephemeral public key of a target t
stored in the set Yt St:eKeysMap½pkt�, with pkt
being the public key of t. It is activated by a transac-
tion �txGetEKey.

� GetGKey reads St at the most current block and
returns the pre-group key gKey.

� GetGKeyMat reads St at the most current block and
returns different key materials that are chosen based
on the value of St:grpOP. Those key materials will be
used to obtain the final group key.

Futhermore, GKSC has a private/helper function named
CheckMembershipðÞ whose aim is to check if a user is part of
the group managed by GKSC. Also, in Fig. 3, we used the
following notations derived from Solidity [25]:

� msg:sender:pubkey allows to retrieve the public key of
the user who sent a transaction.

� Events are actions that are logged in the blockchain.
They are activated by the keywork Emmit. In Fig. 3,
we have an event called shareGrpOPðÞ which allows
us to log the operations that were performed on the
group.

User’s Algorithms. To interact with the blockchain and the
group key SC, users have access to the following algorithms:

� CreateAccountð1�Þ ! ðsk; pkÞ. CreateAccount takes as
input a security parameter 1� and returns a secret
key sk 2 Zn and public key pk ¼ sk:G 2 EðFpÞ. Fur-
thermore, it creates an account on the blockchain
hosting the SC such that pk can be used to reference
that account.

� GenEkeysð1�; ‘Þ ! ðY;XÞ. GenEkeys takes as input a
security parameter 1� and a variable ‘ 2 N and
returns two sets Y;X such that jXj ¼ jYj ¼ ‘. y repre-
sents the set of ephemeral public keys, and X the set
of ephemeral secret keys such that xi 2 X corre-
sponds to the secret key of the public key yi 2 Y.

� UploadEKeysðpk;YÞ ! �txPostEKeys. UploadEKeys allows
a user to upload a set of fresh ephemeral public keys
to GKSC. It takes as input the public key pk of that
user, and a set Y containing the ephemeral public
keys. Then, it outputs a transaction �txPostEKeys.

� reqEKeyðpktÞ ! yit . reqEKey allows a user to obtain a
fresh ephemeral public key of a target t stored in
GKSC’s state St. It takes as input the target’s public
key pkt and outputs one of its fresh ephemeral public
key yit . It generates a transaction �txGetEKey that calls
GKSC’s function GetEKeyðÞwhich returns yit .

� reqGKeyðpkÞ ! gKey. reqGKey allows groupmembers
to obtain the set gKey stored in GKSC’s state St. It
takes as input pk, the public key of a group member,
and generates a call toGKSC’s functionGetGKeyðÞ.

� reqGKMatðpkÞ ! tp. reqGKMat allows group members
to obtain different key materials that will allow them
to derive the final group key. It takes as input a
user’s public key pk and outputs tp, a tuple of key
materials. It generates a call to GKSC’s function
GetGKeyMatðÞ, and if St:grpOP 2 fCRT;ADD;RMg, then
tp ¼ ðgKey; encK½pks�; encS½pks�;usedEkeys½pks�Þ.

Otherwise, if St:grpOP ¼ UPD, then tp ¼ ðgKey; encK
½pks�; usedEkeys½pks�Þ.

� initGrpðpkadm; grpOP; encK; encS; A; usedEKeysÞ !
�txCreateGrp. initGrp allows a user (the administrator) to
initiate the creation of a group or the removal ofmem-
bers from the group. It takes as input the adminis-
trator’s public key pkadm, the group status grpOPðCRT
for the creation of the group, RM for the removal of
members), two sets encK; encS containing the en-
cryption of the secret values k and s, respectively, for
each member, a set A containing the contribution of
group members, and a set usedEKeys of ephemeral
public keys used by the process. It outputs a transac-
tion �txCreateGrp.

� initGrpUpdðpks; encK; �; sumEKeys; usedEKeysÞ !
�txUpdGkey. initGrpUpd allows a group member to initiate
an update for the group key. It takes as input the
group member public key pks, a set encK containing
the encryption of the secret value k for each member,
a value � that will be used to update the group key, a
value sumEKeys that represents the sum of ephem-
eral keys used, and a set usedEKeys that contains
the ephemeral keys used. It outputs a transaction
�txUpdGkey.

� initAddMbrðpkn; encKn; u; encS;usedEKeysÞ ! �txAddMbr.
initAddMbr allows a group administrator to add a new
member. It takes as input the new member’s public
key pkn, the encryption of the secret value k for the
newmember encKn, the contribution of the newmem-
ber u, two set encS;usedEKeys containing the encryp-
tion of the secret value s and the ephemeral public
keys used, respectively. It outputs a transaction
�txAddMbr.

5.2 Description of Operations

Setup. The setup process performs the following steps:

1) It calls GroupGenð1nÞ ! ðn;G; a; b; EðFpÞÞ. GroupGen

generates the public parameters for the elliptic curve
group that will be used by the system. It takes as
input a security parameter 1n and outputs a group of
points EðFpÞ defined over E=Fp with coefficients
a; b 2 Fp, and a point G 2 EðFpÞ, the base point, with
primer order n.

2) It initializes the blockchain and generates the genesis
block b0. In addition, it selects a Chosen-Ciphertext
Attack (CCA)-secure cipher F : K	M! C:

3) It deploys GKSC (Fig. 3), and initializes its internal
state St. Furthermore, it publishes the parameters
n;G; a; b; EðFpÞ, and F .

Once the setup process is completed, each user ui exe-
cutes CreateAccountð1�Þ. The setup process can be executed
once or multiple times depending on the needs of the run-
time environment.

Ephemeral KeyUploading.The use of ephemeral keys is cru-
cial to ensure that our proposed scheme achieves PFS and
PCS. Hence, each participant should periodically refresh its
ephemeral keys stored inGKSC. Moreover, before any execu-
tion of the proposed scheme, all group members should
have fresh ephemeral keys stored in GKSC. Following is the
procedure to generate and update the ephemeral keys:

3182 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

1) A user ui executes GenEkeysð1n; ‘Þ ! ðYi;XiÞ.
2) ui securely stores Xi and executes UploadEKeysðpki;YiÞ:
3) OnceGKSC receives �txPostEKeys, the function PostEKeys

is executed. This allows to storeYi in St.
If ui re-executes that procedure, its ephemeral keys will

be updated. It is worth noting that an ephmeral key pair
must be discarded after it is used.

Group Creation. The group creation process allows an ini-
tiator/group administrator u0 and a set of responders
fu1; . . . ; umg to initialize the overall state of the protocol and
establish the group key. Fig. 4 provides a graphical repre-
sentation of this operation. When u0 and fu1; . . . ; umg wish
to create a group, they proceed as follows:

� Phase 1. (we assume that the initiator is the only
user online) The initiator u0 executes the following
operations:
1) Sample at random two secret values k 2 Z�n; s 2

Fp, and its contribution a0 2 Fp. Then, select a
fresh pair of ephemeral keys ðx0; y0Þ ðX0;Y0Þ.

2) Declare four empty sets A, encK, encS, usedE
Keys. Then, set A½pk0� ElGamal:Encðk;y0Þða0Þ and
usedEKeys½pk0� y0.

3) For each responder ui 2 fu1; . . . ; umg:
a) Get yi reqEKeyðpkiÞ, and then compute

ai pABKEðs0; pki; x0; yiÞ, the contribution
of ui.

b) Initialize A½pki� ElGamal:Encðk;yiÞðaiÞ,
encK½pki� F ðai; kÞ, encS½pki� F ðai; sÞ,
and usedEKeys½pki� yi.

c) Discard ai.
4) Execute the function

initGrpðpk0;CRT; encK; encS;A;usedEKeysÞ:

� Phase 2. Each responder ui 2 fu1; . . . ; umg comes
online and executes the following operations to
obtain the group key:
1) Get ðgKey, encKi; encSi; yi; y0Þ reqGKMatðpkiÞ.
2) Select xi 2 Xi the secret ephemeral key corre-

sponding to yi and compute ai pABKEðsi; pk0;
xi; y0Þ, its contribution thatwas used by u0.

3) Compute k F -1ðai; encKiÞ and s F -1ðai; encSiÞ
and then compute b gKey½0� � ðk	 gKey½1�Þ.

4) Compute the group key ssk KDFðb; sÞ and
hi H 0ðaiÞ (hi will be used to update the group key).

5) Discard the tuple of key materials ðs; b;aiÞ.

In case of u0, to obtain the group key, it performs the fol-
lowing operations:

1) Get gKey reqGKeyðpk0Þ and then compute b
gKey½0� � ðk	 gKey½1�Þ (u0 has s and k in memory).

2) Compute the group key ssk KDFðb; sÞ and
h0 H 0ða0Þ.

Fig. 4. Group creation process.

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3183

3) Discard the tuple of key materials ðs; b;a0Þ.
We show that all group members derive the same group

key ssk KDFðs; bÞ.
Update Group. Using the update process, a group member

(whose local state was possibly leaked) can update its local
state and the group state, which will re-establishing the
security of the group key. Fig. 5 provides a graphical repre-
sentation of this operation. Following is a description of the
update group process:

� Phase 1. A group member ui 2 fu0; . . . ; umg that
wants to initiate the process, executes the following
operations:
1) Sample at random a secret value k0 2 Z�n and a

new contribution a0i 2 Fp. Then, select a fresh
pair of ephemeral keys ðxi; yiÞ ðXi;YiÞ.

2) Declare two empty sets encK0;usedEKeys0 and
initialize usedEKeys0½pki�with yi.

3) For each user uj;j6¼i 2 fu0; . . . ; umg:
a) Get yj reqEKeyðpkjÞ and then compute

a0j pABKEðsi; pkj; xi; yjÞ.
b) Initialize encK0½pkj� F ða0j; k0Þ and usedE

Keys0½pkj� yj.
c) Delete a0j.

4) Get gKey reqGKeyðpkiÞ.

5) Compute sumEKeys Pm
l¼0 usedEKeys0½pkl� and

the updating factor:

� ElGamal:Encðk0;sumEKeysÞða0iÞ � ðk	 gKey½1�Þ � hi;

where hi is the hash of its contribution that was
computed during Phase 2 of the Group Creation
process.

6) Compute h0i H 0ða0iÞ, the update of hi.
7) Execute

initGrpUpdðpki; encK0; �; sumEKeys;usedEKeysÞ:

� Phase 2. To get the new group key, each group mem-
ber uj;j 6¼i 2 fu0; . . . ; umg comes online and executes
the following operations:
1) Get ðgKey; encKj; yj; yiÞ reqGKMatðpkjÞ.
2) Select xj 2 Xj the secret ephemeral key corre-

sponding to yj and compute a0j pABKEðsj; pki;
xj; yiÞ, its contribution that was used by ui.

3) Compute k0 F -1ða0j; encKjÞ and then compute
b0 gKey½0� � ðk0 	 gKey½1�Þ.

4) Compute the new group key ssk0 KDFðb0; sskÞ
then delete b0.

The initiator of the update group process ui obtains the
new group key as follows:

Fig. 5. Group update process.

3184 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

1) Get the pre-group key gKey reqGKeyðpkiÞ and
then compute b0 gKey½0� � ðk0 	 gKey½1�Þ, (ui

has k0 in memory).
2) Compute the new group key ssk0 KDFðb0; sskÞ

and then delete b0.
Add Member. A group administrator u0 can add a new

member umþ1 to its group fu0; . . . ; umg. The addition of a
new member will cause an update of the current group
key, which will prevent the new group member from
accessing messages exchanged prior to its addition. Fig. 6
provides a graphical representation of this operation.
Following is a description of process to add new group
member:

� Phase 1. The group administrator u0 executes the fol-
lowing operations:
1) Sample at random a secret value s0 2 Fp and

select a fresh pair of ephemeral keys ðx0; y0Þ
ðX0;Y0Þ.

2) Declare two sets encS0;usedEKeys0 and initialize
usedEKeys0½pk0�with y0.

3) For each user ui 2 fu1; . . . ; um; umþ1g, do:
a) Get yi reqEKeyðpkiÞ and then initialize

usedEKeys0½pki� yi.
b) Compute ai pABKEðs0; pki; x0; yiÞ then ini-

tialize encS0½pki� F ðai; s
0Þ.

c) For the new member umþ1, do:
i) compute u ElGamal:Encðk;ymþ1Þðamþ1Þ

and encKmþ1 F ðamþ1; kÞ.
d) Delete ai

4) Execute the function

initAddMbrðpk0; encKmþ1; u; encS0;usedEKeys0Þ:

� Phase 2. To get the new group key, each previous
member ui 2 fu1; . . . ; umg executes the following
operations:
1) Get ðgKey; encKi; encSi; yi; y0Þ reqGKMatðpkiÞ and

then discard encKi.
2) Select xi 2 Xi the secret key associated with yi

and then compute ai pABKEðsi; pk0; xi; y0Þ.
3) Compute s0 F -1ðai; encSiÞ and b0 gKey½0� �

ðk	 gKey½1�Þ.
4) Compute the new group key ssk0 KDFðb0; s0Þ

and then delete the tuple ðs0;b0Þ.

In case of the new group member umþ1, to obtain the new
group key, it performs the following operations:

1) Execute the steps 1, 2, and 3 that the previous
members fu1; . . . ; umg did, but at step 1, do not
discard encKi and at step 3, do not compute b0.

2) Compute k F -1ðamþ1; encKmþ1Þ and b0
gKey½0� � ðk	 gKey½1�Þ.

3) Compute the new group key ssk0 KDFðb0; s0Þ
and hmþ1 H 0ðamþ1Þ.

4) Discard the tuple ðs0;b0;amþ1Þ.

In case of the administrator u0, it obtains the new group
key by executing the following operations:

1) Get gKey reqGKeyðpk0Þ.

Fig. 6. Add member process.

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3185

2) Compute b0 gKey½0� � ðk	 gKey½1�Þ.
3) Compute the new group key ssk0 KDFðb0; s0Þ,

(from phase 1, u0 has s0 in the memory) and then
delete the tuple ðs0;b0Þ.

RemoveMember.A group administrator can remove one or
multiple group members from its group. The remove mem-
ber process will initiate an update of the current group key,
and hence, will prevent the removed members from access-
ing future messages. For a group administrator u0 to remove
a set of users fui; . . . ; ujg from the group fu0; u1; . . . ; umg, it
needs to re-execute theGroup Creation processwith the group
fu0; u1; . . . ; umg=fui; . . . ; ujg. However, at the end of Phase 1,
instead of executing

initGrpðpk0;CRT; encK; encS;A;usedEKeysÞ;

u0 executes

initGrpðpk0;RM; encK; encS;A;usedEKeysÞ:

Recovering Group Key. It is possible for a group member to
recover the group key after missing multiple group opera-
tions. For instance, let us consider the scenario depicted by
Fig. 7. A user uj having an instancePr

uj
with a group success-

fully derives the group key during theGroup Creationprocess,
which sets Pr

uj
:blkNum ¼ bi. However, while uj is offline,

three operations are performed on the group associated with
Pr

uj
in the following order: Update Group ! Add Member !

Update Group. When uj comes back online, Pr
uj
:ssk does not

match the group key anymore. To recover the current group
Key, uj simply starts by reading GKSC’s St at block Pr

uj
:

blkNumþ 1, which is equal to biþ1 in this case, and performs
different instructions to derive the group key based on the
group operations that were performed until Pr

uj
:blkNum is

equal to themost recent block.
Handling Simultaneous Update Requests. The Update Group

operation can be initiated by any group member at anytime.
Therefore, it is possible for two or more group members to
perform that operation at the same time. Other group opera-
tions might not be in such situation because they can only be
triggered by the group administrator. We propose two ideas
on how to handle such situation, but we would like to
emphasize that they do not have a detrimental effect on the
security of the proposed scheme:

� Allow operations to proceed: suppose two group
members ui and uj simultaneously perform theUpdate
Group operation. At the end of the Phase 1, ui outputs a

transaction f�txUpdGkeygi and uj outputs f�txUpdGkeygj.
These transactions will trigger the GKSC’s function
UpdGKey and modify the GKSC’s internal variables
encK;usedEKeys; gKey. Therefore, miners will have
to execute these transactions in sequence. However,
modifying encK;usedEKeyswill not have an adverse
effect on the proposed scheme since they are not
directly influencing the computation of the group key.
Thus, let us focus on gKey. Suppose f�txUpdGkeygi is exe-
cuted before f�txUpdGkeygj. At the end of f�txUpdGkeygi’s
execution, we have

gKey½0� ¼ H 0ða0Þ þ

 þH0ða0iÞ þ

 þH 0ðamÞ þ k0

Xm
l¼0

y0l;

where, a0i is the new contribution of ui, k
0 is the new

secret value and
Pm

l¼0 y
0
l is the sum of fresh ephem-

eral keys used by ui. Next, after the execution of
f�txUpdGkeygj, we have

gKey½0� ¼ H 0ða0Þ þ

 þH 0ða0iÞ þH 0ða0jÞ þ

 þ

H 0ðamÞ þ k0

Xm
l¼0

y0l þ k00

Xm
l¼0

y00l � k

Xm
l¼0

yl;

where a0j is the new contribution of uj, k is the old
secret variable and

Pm
l¼0 yl is the sum of ephemeral

keys used before ui and uj execute the Update Group
operation, and k00 is the new secret variable andPm

l¼0 y
00
l is the sum of fresh ephemeral public keys that

were used by uj during its execution ofUpdate Group.
Next, during Phase 2 of Update Group member,

groupsmemberswill compute:

b ¼ gKey½0� � k00

Xm
l¼0

y00l

¼ H 0ða0Þ þ

 þH 0ða0iÞ þH 0ða0jÞ þ

 þH 0ðamÞ

þ k0

Xm
l¼0

y0l � k

Xm
l¼0

yl;

instead of

b ¼ H 0ða0Þ þ

 þH 0ða0iÞ þH 0ða0jÞ þ

 þH 0ðamÞ:

Therefore, allowing all operations to proceed will
increase the size of the pre-group key by adding the
term k0
Pm

l¼0 y
0
l � k
Pm

l¼0 yl, but this will not reduce
the security of the key update process since a poten-
tial attacker will not be able to derive the value k0
Pm

l¼0 y
0
l.

� Use a time-lock:we can also augment theGKSC’s func-
tion UpdGKey with a time-lock that will prevent the
execution of UpdGKey for a given period once it is acti-
vated. Given a sequence of calls to UpdGKey, the goal is
for the first call in the sequence to activate the time-
lock, which will cause the subsequent calls to abort by
preventing them from triggering the execution of
UpdGKey. For instance, suppose two users ui; uj try
to execute the Update Group operation simultaneously
and issue the transactions f�txUpdGkeygi, f�txUpdGkeygj,

Fig. 7. uj missed two group operations.

3186 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

respectively. However, suppose f�txUpdGkeygi is exe-
cuted first, and after its execution, the time-lock is acti-
vated. This will force f�txUpdGkeygj to abort and allow uj
to complete the execution of Update Group that was
started by ui before re-initiating an Update Group
process.

6 SECURITY ANALYSIS

In this Section, we analyze the proposed scheme and prove
that the proposed asynchronous GKE is secure against the
adversarial model defined in Section 4. To do so, first we
introduce the following two important definitions.

Definition 4 (Partnering). Partnering allows to capture the
fact that two or more instances that are part of the same group
have derived the same group key. We say that the instances in a
set fPt0

u0
;Pt1

u1
; . . .g are partnered when the following condition

are satisfied:

� The status of each instance is set to accept.
� All instances are at the same state d.
� The list of members Mbrs is the same for each instance.
� All instances use the same smart contract ID (SCID).
� The session variable blkNum is the same for all instances.

Definition 5 (Freshness). Freshness defines the scope in which
an adversary cannot trivially obtain the session key of an
instance dPt

u. Hence, an instance dPt
u is fresh if the following

conditions are satisfied:

� dPt
u:status ¼ accept.

� An adversary has not issued a query RevealðdPt
uÞ, and

for all instance dPr
v partenered to dPt

u, the adversary
has not issue a query RevealðdPr

vÞ or TestðdPr
vÞ.

� An adversary has not issued a query CorruptðdPt
uÞ

before dPt
u accept.

� If d > 0, then d�1Pt
u is also fresh.

Definition 6 (Semantic Security). This captures the fact that
it should be hard for a PPT adversary to distinguish the key
produced by a fresh instance of the protocol from a random key.
Given a challenger Ch, an instance P, and a PPT adversary A
that has access to the queries defined in section 4.2 with the
restriction that Test queries can only be performed on fresh
instances, a GKE is secure is A’s advantage AdvA at correctly
guessing the bit used during the response of the Test query is
negligible, where

AdvA ¼ Pr½b0 A : b ¼ b0� � 1

2

����
����:

6.1 Smart Contract Leakage Analysis

In this subsection, we analyse the information that an adver-
sary can obtain from GKSC. We show that under the Ran-
dom Oracle (RO) model, the adversary cannot obtain the
session key from the data stored in GKSC’s state St.

First, by reading St:eKeysMap, an adversary can learn
which users decided to form a group because to be part of a
group, one needs to upload a set of ephemeral keys. Also, by
reading St:usedEKeys, an adversary can learn the actual size
and participants of a group since St:usedEKeys contains the
list of ephemeral keys that were used by the group’s initiator.

However, such information can also be inferred by an adver-
sary that has complete control over the network. In addition,
just getting the used public ephemeral keys does not leak the
session key. Next, an adversary can determine the group
administrator/initiator by reading St:admin. Replacing GKSC

by a TTP will not prevent an attacker from obtaining such
information since with total control over the network, the
adversary can get the size of a group and its members. Fur-
thermore, if the TTP is corrupted, then an attacker can get
the identity of the group’s initiator.

Theorem 1. Assume KDF is a RO. Consider GSKC to be the SC
that is used in an instance Pt

u. If F is ðtCCA; �CCAÞ-CCA secure
and pABKE is a ðtABKE; �ABKEÞ-secure asynchronous key exchange,
then for any stage d 2 N of Pt

u, the probability that a PPT
adversary A obtains ssk by only accessing GSKC’s state St is
negligible in the values �CCA; �ABKE and the security parameter
1n, where its probability is defined as follows:

Pr½sskA Að1n;StÞ : sskA ¼ ssk�:

Proof. Based on the type of operation performed by group
members, the session key is computed as ssk KDFðb; sÞ
or ssk KDFðb; ssk0Þ, where b ¼Pm

i¼0 H
0ðaiÞ, ai is the

contribution of ui, and ssk0 is the session key at the previ-
ous stage of Pt

u. Since KDF is a RO, the only way for A to
obtain ssk is to query KDF at ðb; sÞ or ðb; ssk0Þ depending
on the cases. In St we have four variables that can help an
adversary to obtain the session key:

� the set usedEKeys.
� the set gKey in which gKey½0� ¼ bþ k	Pm

i¼0 yi
and gKey½1� ¼Pm

i¼0 yi.
� The sets enck and encS. Let encKi and encSi be

elements of enck and encS at position i respec-
tively. We have encKi ¼ F ðai; kÞ and encSi ¼
F ðai; sÞ, where ai is the result of pABKE between
the group initiator and a group member at posi-
tion i, i.e., the contribution of ui.

It is impossible for A to extract b from gKey½0� unless
it is able to find the value k.

Let us consider the following cases:
Case ssk. This case happens when Group Creation, Add

Member or Remove Member is executed. To show that A
cannot compute ssk using only St, we use a series of
games:

Game 0. In this game, the proposed protocol is exe-
cuted normally with the restriction that only the follow-
ing operations can be executed: Group Creation, Add
Member and Remove Member. At the end of the protocol,
GKSC’s state St and the security parameter 1n is given to
A. Let p0 denotes the success’s probability of A in this
game, i.e., the probability that A obtains ssk.

Game 1. This game is similar to Game 0 with the excep-
tion that pABKE always returns a random string. Let p1
denotes the success’s probability of A in this game. We
show that

p0 � p1j j � �ABKE: (1)

Let A0 be an adversary that tries to distinguish the output
of pABKE from random. Generally, in a security model of

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3187

pABKE, A0 has access to a set of queries among which there
is a test query that when executed, it either returns the
session key computed by pABKE or an output sampled at
random [22]. Let us consider the following experiment
(EXPb

ABKE):

1) A0 selects an instance of pABKE between the group
initiator u0 and a responder ui.

2) A0 executes different queries in the security model
of pABKE except the test query.

3) A0 executes the test query. If b ¼ 0, the test query
sets skey to be the computed session key. Other-
wise, it sets skey to be a random string. Next, A0
receives skey.

4) A0 generates eSt which is a collection of variables
that mimics St, a state of GKSC between u0 and ui

as follows:
a) Randomly sample k 2 Z�n; s 2 Fp;b 2 EðFpÞ,

and set ssk KDFðb; sÞ.
b) Set eSt:gKey½0� ¼ bþ k	 ðy0 þ yiÞ, eSt:gKey½1� ¼

y0 þ yi, and add yi; y0 to eSt:usedEKeys, where
y0; yi are the ephemeral keys of u0 and ui,
respectively.

c) Compute encSi F ðskey; sÞ, encKi F ðskey; kÞ
and add them to eSt:encS and eSt:encK resp-
ectively.

5) A0 computes sskA Að1n; eStÞ. If sskA ¼ ssk, A0
returns 1. Else, it returns 0.

6) A0 wins if it outputs 1.
A0 is PPT since A is also PPT.
Remark, we limitedA0 simulation to two parties (u0; ui)

for simplicity, but this can be extended to a polynomial
number of parties by allowing A0 to attack multiple pABKE

instances in parallel.
In EXP0

ABKE, the distribution of eSt is similar to the dis-
tribution of St in Game 0, and in EXP1

ABKE, it is similar to
the distribution of St in Game 1. Therefore

Pr½A0 wins jEXP0
ABKE� � Pr½A0 wins jEXP1

ABKE�
�� �� ¼

p0 � p1j j;

but

Pr½A0 wins jEXP0
ABKE� � Pr½A0 wins jEXP1

ABKE�
�� �� � �ABKE:

Combining the results, we reach equation 1.
Game 2. This game is similar to Game 1 with the excep-

tion that evaluating F in encryption mode returns a ran-
dom value in C independent of its inputs. Let p2 be the
success probability of A in this game. Unless A is able to
break the security of F , A should not be able to see the
difference between Game 1 and Game 2. However, such
an event can happen with a probability of at most �CCA.
Hence,

p1 � p2j j � �CCA:

Furthermore, in Game 2, the output of pABKE is indepen-
dent from pk0; pki; y0; yi, and the output of F is indepen-
dent from its inputs. Hence, the best A can do to extract k
and s from St to compute ssk is to randomly guess their

values. Therefore, for the case ssk KDFðb; sÞ, the proba-
bility forA to extract the session key using St is negligible.

Case ssk This case happens when the operation Update
Group is executed. Let us assume that A is in possession
of ssk0 since the execution of the Update Group operation
may indicate the corruption of a group member. Thus
the objective of A is to find b given St. As stated earlier,
A cannot extracts b from St:gKey½0� without knowing k.
Therefore, either A randomly guesses the value k or A
tries to extract k from encKi. For the former option, the
success probability of A is bounded above by q
 jZ�nj�1,
where q is the maximum number of guesses that A can
make, and for the later option, its success probability is
bounded above by �CCA.

Since the above cases are exhaustive, we conclude that
the success probability of A to obtain ssk from St is negli-
gible in the values �CCA; �ABKE and the security parameter
1n This proves Theorem 1. tu

6.2 Perfect Forward Secrecy

In this subsection, we show that our proposed scheme sup-
ports PFS.

Given an instance Pt
u, PFS stipulates that the execution of

a query Corruptðd0Pt
uÞ by an adversary should not reveal the

session keys derived in a previous stage d, where 0 � d �
d0, or derived in another instance Ps

u, where s 6¼ t, that ter-
minated before Pt

u starts.
Assume that KDF is a RO and the discrete logarithm

assumption holds in EðFqÞ and pABKE is a strong one-round
authenticated key exchange protocol. Consider that for an
instance Pt

u, a PPT adversary A executes the query
Corruptðd0Pt

uÞ. This reveals the state of Pt
u at stage d0, which

includes the long-term private key. Depending on when the
adversary executes the query, we have two cases:

� Case 1: A executes the query before d0Pt
u accepts. In

this case, the adversary can easily obtain the session
key that was derived at stage d0.

� Case 2: A executes the query after d0Pt
u accepts, i.e.,

d0Pt
u is fresh. In this case, the adversary cannot easily

obtain the session key that was derived at stage d0
unless it executes the query Revealðd0Pt

uÞ because the
secret ephemeral keys and either the secret variable
s (in case Group Creation, Add Member or Remove
Member is executed), or the previous session key ssk0

(in case Update Group is executed) that were used
during the computation of the session key were
erased once d0Pt

u accepted.
In both cases, the adversary cannot obtain session keys

that were derived in the previous stages or instances for rea-
sons that we explain in the following lines. First, since KDF

is a RO, each derived session key is random and uniform,
and therefore it does not reveal anything about other ses-
sion keys. Second, each stage requires fresh ephemeral keys
that are discarded after their usage. Though, the adversary
can obtain the public counterpart of each ephemeral key
and the long-term private key that were used at a stage, this
is not sufficient to derive a session key unless the adversary
is able to extract the output of pABKE using only the long-
term private key and the ephemeral public keys, which
means that it can breaks the security of pABKE, or is able to

3188 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

breaks the discrete logarithm assumption. Therefore, our
proposed scheme satisfies PFS.

6.3 Post-Compromise Security

In this subsection, we demonstrate that our proposed
scheme supports PCS.

Given an instance Pt
u, PCS stipulates that if an adversary

executes a query Corruptðd0Pt
uÞ, instances partnered to Pt

u

should be able to re-establish security guarantees [12]. In
the case of our proposed scheme, this is ensured by a suc-
cessful execution of the Update Group process.

After the adversary has executed the query Corruptðd0Pt
uÞ,

it has the state ofPt
u at stage d0 in its possession and can pos-

sibly obtain the session key that was derived at that stage.
Since it has access to u’s long-term key, it can easily prevent
the future stages from accepting by using queries defined in
subsection 4.2. Now, let us assume that during the stage d0 þ
i of instance Pt

u, the adversary goes passive, i.e., it does not
issue queries anymore, and user u successfully initiates the
Update Group process. Once the execution of theUpdate Group
process is completed, the instance d0þiPt

u is now fresh and so
are the instances fd0þiþ1Pt

u;
d0þiþ2 Pt

u; . . .g. Hence, our pro-
posed scheme satisfies PCS under a passive adversary

6.4 Semantic Security

Security Experiment. We define a security game between a
challenger Ch and a PPT adversary A. At the beginning of
the game, Ch runs the Setup process (5.2) and initializes a set
fu0; u1; . . . ; umg of users. Then, it sends GKSC’s ID to A.
Next, A can execute any queries defined in section 4.2
except for the Test query that can only be executed once and
on a fresh instance (Definition 5). Once A executes the Test

query, it must output a guess bit b0. A wins if its guessed bit
b0 is correct.

Theorem 2. Assume KDF is a RO, and letDðKDFÞ be the domain
space of the KDF. If F is ðtCCA; �CCAÞ-CCA secure, pABKE is a
ðtABKE; �ABKEÞ-secure asynchronous key exchange, and F is a
ðtCMA; �CMAÞ-CMA secure digital signature, A’s advantage
against our proposed game is bounded by the following inequality

AdvA � �CCA þ �ABKE þ �St þ h
 �CMA þ
h
T
D

2

� �
n

þ qr
2jDðKDFÞj

;

where h is the group size, T is the maximum number of instan-
ces for a given user, D is the maximum number of stages for a
given instance, qr is the maximum number of RO queries that
A can perform and �St ¼ Pr½sskA Að1n;StÞ : sskA ¼ ssk�.

Proof. We present our proof as a sequence of related games
between a challenger Ch and an adversary A. We use
Game i to denote the ith game and pi to denote the success
probability of A in Game i.

Game 0. This is the security experiment defined above.
The success probability of A is p0.

Game 1. This game is identical to Game 0 with the
exception that pABKE always returns a random string.
Therefore

jp0 � p1j � �ABKE: (2)

Game 2. This game is identical to Game 1 with the
exception that F always returns a random element from
C. Therefore

jp1 � p2j � �CCA: (3)

Game 3. This game is identical toGame 2with the excep-
tion that A queries GKSC’s state St and successfully
derives the session key from St before outputting its
guess. If that event happens, Ch halts the game and A
loses. Let us consider that event to be BrkSt. As we can see,
Game 0 =Game 1 unless BrkSt occurs. Hence,

jp2 � p3j � Pr½BrkSt�:

We have Pr½BrkSt� ¼ Pr½sskA Að1n;StÞ : sskA ¼ ssk�. Let
�St ¼ Pr½sskA Að1n;StÞ : sskA ¼ ssk� Therefore,

jp2 � p3j � �St: (4)

However, from Theorem 1, we know that �St is negligible.
Game 4. This game is identical toGame 3, with the excep-

tion that A can produce multiple queries SendðPt
u; dÞ,

where u 2 fu0; u1; . . . ; umg, that can lead Pt
u to accept.

More specifically, d is not a message that was previously
generated by a user v 2 fu0; u1; . . . ; umg. Let us consider
that event to be Forge. IfCh detects that the event Forge hap-
pened, it halts the game andA loses.

Therefore

jp3 � p4j � Pr½Forge�:

In the worst case, A only needs to produce one query
SendðPt

u; dÞ that makes Pt
u accepts. Because, in the pro-

posed scheme, participants communicate through signed
messages/transactions, the message d produced by A
will also need to be signed. Since A can issue a query
SendðPt

u; dÞ to any member u 2 fu0; . . . ; umg, we have

Pr½Forge� � h:�CMA:

Therefore

jp3 � p4j � h:�CMA; (5)

where h ¼ jfu0; . . . ; umgj.
Game 5. This game is identical to Game 4, with the

exception that Ch halts the game and A loses if two dif-
ferent stages dPt

u and d0Pt
u generate the same secret ran-

dom values. Let us consider that event to be Collision. We
have

jp4 � p5j � Pr½Collision�:

However, we have Pr½Collision� � h
T
D
2

� �
 n�1, where T is
the maximum number of instance,D the maximum num-
ber of stages in an instance, and n is the order of EðFqÞ.
Therefore

jp4 � p5j � h
 T
D
2

� �

 n�1: (6)

Furthermore, the best A can do to win Game 5 is to
query the KDF at the correct entries. Let qr be the maxi-
mum number of RO queries that A can make. we have

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3189

p5 � 1

2

����
���� � qr

2jDðKDFÞj
: (7)

Combining inequalities (2), (3), (4), (5), (6), (7), we obtain

AdvA � �CCA þ �ABKE þ �St þ h
 �CMA þ
h
T
D

2

� �
n

þ qr
2jDðKDFÞj

:

Hence, the proof is completed. tu

7 IMPLEMENTATION AND EVALUATION

In this section, we describe and evaluate two implementa-
tions of our protocol using Ethereum [17]: a version in
which all key materials are stored in the GKSC’s state (this is
the SC defined in Fig. 3), and a version in which only the
key materials necessary for the execution of the core GKSC

functionalities (CreateGrpðÞ;UpdGKeyðÞ;AddMbrðÞ) are stored
on GKSC’s state and the others on a distributed storage sys-
tem (presented in Appendix as a light version, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2022.3189977).

7.1 Cryptographic Primitives

In the construction of our protocol, we used different cryp-
tographic primitives as black-boxes. Besides simplifying the
complexity of the protocol, this approach allows anyone to
swap them with concrete instances based on its environ-
ment needs. Following is a description of the instantiations
we used in our implementation:

� Elliptic Curve Group EðFpÞ. We used a group based
on Barreto-Naehrig (BN) curve over 256-bit prime
field [26]. This choice was motivated by the fact that
Ethereum supports elliptic curve points addition as
built-in operation, which offers the prospect of a
reduce gas cost [27].

� Digital Signature F. We used Elliptic-Curve Digital
Signature Algorithm (ECDSA) [28] since it is the sig-
nature scheme used by Ethereum [17].

� Asynchronous Biparty KE pABKE. We used the Extended
Triple Diffie-Hellman (X3DH) protocol [23]. Given an
initiator’s private keys skI; xI 2 Zn and a responder’s
public keys pkR; yR 2 EðFpÞ, we have

X3DHðskI; pkR; xI; yRÞ ¼ KDFðskI:yRjjxI:pkRjjxI:yRÞ

� Cipher F . We used Chacha20-Poly1305 from the
PyCryptodome library [29]. This choice was moti-
vated by its computational efficiency [30].

� Key Derivation Function KDF. We used the HKDF
scheme [31] from the Py_ECC library [32].

� Hash to curve H 0. We have relaxed the CHR property
of H 0. Given a base point G 2 EðFpÞ with order n
and a messagem 2 f0; 1g�,H 0ðmÞ ¼ ½mmodn� 	G.

7.2 Simulation Environment

We implemented the User’s algorithms (Section 5.1) with
Python (version 3.6.7) and usedWeb3.Py [33] to interface the
Ethereum blockchain. We used Truffle Suite [34] to simulate

a local instance of the Ethereum blockchain and imple-
mented GKSC. Our implementation was written and com-
plied using Solidity version 0.5.16. It has successfully passed
the formal verification process by means of the automated
tools OYENTE and OYENTE IPFS1 [35]. A non-complied
version of our implementation and testing results are avail-
able from ourwebsite.2

Each participant had a long-term key pair defined over
BN curve and a signing key defined over SECP256K1
curve [36] (this is the curve used by Ethereum to define the
address of an account and sign transactions [17]). The simu-
lation was performed on a Windows 10 computer with a
4.00 GHz Intel core i7 and 32 GB of RAM.

7.3 Performance Evaluation

We measured the gas consumption of the functions
CreateGrpðÞ, UpdGKeyðÞ, and AddMbrðÞ for different group size
in two configurations: (1) all key materials are stored in St;
and (2) only the pre-group key computed by GKSC is stored
in St and the rest in a distributed storage such as IPFS [37]
(we refer to this version as Lite GKSC). Fig. 8 shows the dif-
ference in average gas consumption between both imple-
mentations for each function. In both cases, CreateGrpðÞ is
the operation that consumes the most gas, whereas
UpdGKeyðÞ and AddMbrðÞ consume approximately the same
amount of gas. This is because variables stored in St are ini-
tialized during the execution of CreateGrpðÞ while they are
updated during the execution of UpdGKeyðÞ and AddMbrðÞ. It
is worth noting that the group administrator is the one pay-
ing for CreateGrpðÞ and AddMbrðÞ gas consumption, whereas
the group member initiating UpdGKeyðÞ is the one paying for
its gas consumption. Overall using the lite GKSC consumes
approximately 83% less gas than the full GKSC for each
operation. This is because storing data on Ethereum is
expensive (the store operation cost 20,000 gas [17]). By com-
bining lite GKSC with a distributed storage, the group
administrator pays approximately 1685263 gas for the exe-
cution of CreateGrpðÞ and 772963 gas for the execution of
AddMbrðÞ for a group size of 100 members. In the case of
UpdGKeyðÞ, a group member pays 764771 gas.

8 RELATED WORKS

The existing works in the literature focused on GKA
schemes that reduce the computational burden of the group
members by delegating a part of the process to a TTP [38],
[39], [40]. In these approaches, each group member sends
key materials to the TTP. Then, the TTP computes and
broadcasts a pre-group key to group members which will
be used to derive the final group key. However, all group
members need to be online and send their contributions
during a given time-frame. In addition, these schemes do
not provide post-compromised security and suffer from the
drawbacks of using a TTP.

In GKA, the main role of a TTP is to provide Public Key
Infrastructure (PKI)-related operations. PKIs are used to
store and manage public encryption keys used by nodes in
a network. To mitigate the issues of traditional PKIs, e.g.,

1. https://oyente.tech/
2. http://i2s.kennesaw.edu/resources

3190 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

http://doi.ieeecomputersociety.org/10.1109/TDSC.2022.3189977
http://doi.ieeecomputersociety.org/10.1109/TDSC.2022.3189977

high centralization, decentralized PKIs based on block-
chain have been proposed [16], [41], [42]. Since block-
chain is immutable, blockchain-based solutions improve
the integrity of public keys. However, using decentral-
ized PKIs do not completely shield GKAs, and thus TTPs
are still required to perform some operations such as pre-
key computation. To use blockchain in conjunction with
GKA, Schindler et al. proposed a distributed key genera-
tion system that leverages Ethereum’s smart contract for
communication [43]. In their scheme, TTP is no longer
needed to handle keys and some operations are executed
on Ethereum through smart contracts for devices’ effi-
ciency. However, all group members must be online dur-
ing the initial operation, and a subset of group members
must cooperate to obtain the secret key. This is not practi-
cal in an environment where some members have an
intermittent connection.

A TreeKEM, asynchronous decentralized key manage-
ment for large dynamic groups, was proposed by IETF Mes-
sage-Layer Security (MLS) working group [44]. After then,
many schemes were proposed to enhance the security and
efficiency of it. Alwen et al. pointed out that the TreeKEM
does not provide an adequate form of the forward secrecy
and proposed an extended version, named RTreeKEM, in
order to address the insecurity [45]. A rigorous security
proof which concluded that the basic instantiation of MLS is
a Secure Group Messaging (SGM) is provided [46]. It also
provides a basic construction of SGM protocl based on sev-
eral primitives. A key tree grafting scheme was proposed to
make it possible to efficiently deal with users belong to mul-
tiple groups [47].

Most importantly, none of the existing works offer post-
compromise security and asynchronism concurrently with-
out a TTP. Moreover, most schemes were developed without
considering smart contract environments, and therefore,
additional efforts are required in order to make them ade-
quately work on such environments. Some of the existing
schemes provide those requirements for large group [7],
[48]. However, they rely on a TTP and do not support the del-
egation of computation, which makes them impractical for
resource-constrained IoT devices.

9 CONCLUSION

In this paper, we presented an asynchronous group key
exchange scheme based on blockchain and smart contracts

that is resistant to common attacks targeted at trusted third
parties. The use of smart contracts allows us to reduce the
memory and computational load of the participants. The
scheme provides perfect forward secrecy and post-compro-
mise security. Furthermore, it allows the addition of the par-
ticipants to the group and removal of the participants from
the group. Our simulation results show that the scheme can
easily support 100 members when paired with a distributed
storage system.

As a future work, we plan to explore the use of Random-
ness Beacon [49] to directly generate random secret values
on the smart contract, and therefore, aim at further reducing
the computational load of the participants.

REFERENCES

[1] V. Y. Kemmoe, Y. Kwon, S. Shin, R. Hussain, S. Cho, and J. Son,
“Leveraging smart contracts for asynchronous group key agree-
ment in Internet of Things,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., 2020, pp. 70–75.

[2] T. Brecher, E. Bresson, and M. Manulis, “Fully robust tree-Diffie-
Hellman group key exchange,” in Proc. Int. Conf. Cryptol. Netw.
Secur., 2009, pp. 478–497.

[3] M. F. Zanjani, S. M. A. Abhari, and A. G. Chefranov, “Group key
exchange protocol based on Diffie-Hellman technique in ad-hoc
network,” in Proc. 7th Int. Conf. Secur. Inf. Netw., 2014, pp. 166–169.

[4] P. Rahimi and C. Chrysostomou, “Improving the network lifetime
and performance of wireless sensor networks for iot applications
based on fuzzy logic,” in Proc. 15th Int. Conf. Distrib. Comput. Sen-
sor Syst., 2019, pp. 667–674.

[5] C. Cachin and R. Strobl, “Asynchronous group key exchange with
failures,” in Proc. 23rd Annu. ACM Symp. Princ. Distrib. Comput.,
2004, pp. 357–366.

[6] C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang, “Offline assisted
group key exchange,” in Proc. 7th Int. Conf. Secur. Inf. Netw., 2018,
pp. 268–285.

[7] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Mil-
ner, “On ends-to-ends encryption: Asynchronous group messag-
ing with strong security guarantees,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2018, pp. 1802–1819.

[8] Z. Dong, K. Kane, and L. J. Camp, “Detection of rogue certificates
from trusted certificate authorities using deep neural networks,”
ACM Trans. Privacy Secur., vol. 19, no. 2, pp. 1–31, Sep. 2016.

[9] C. Hlauschek, M. Gruber, F. Fankhauser, and C. Schanes, “Prying
open pandora’s box: KCI attacks against TLS,” in Proc. 9th USE-
NIX Workshop Offensive Technol., 2015. [Online]. Available:
https://www.usenix.org/conference/woot15/workshop-
program/presentation/hlauschek

[10] Y. Meidan et al., “N-baIoT—Network-based detection of IoT bot-
net attacks using deep autoencoders,” IEEE Pervasive Comput.,
vol. 17, no. 3, pp. 12–22, Jul.–Sep. 2018.

[11] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication
and authenticated key exchanges,” Des., Codes Cryptogr., vol. 2,
pp. 107–125, 1992.

Fig. 8. Average gas consumption based on group size.

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3191

https://www.usenix.org/conference/woot15/workshop-program/presentation/hlauschek
https://www.usenix.org/conference/woot15/workshop-program/presentation/hlauschek

[12] K. Cohn-Gorden, C. Cremers, and L. Garratt, “On post-compro-
mise security,” in Proc. IEEE 29th Comput. Secur. Found. Symp.,
2016, pp. 164–178.

[13] C. Cremers, J. Fairoze, B. Kiesl, and A. Naska, “Clone detection in
secure messaging: Improving post-compromise security in pr-
actice,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 1481–1495.

[14] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and B.
Stiller, “A blockchain-based architecture for collaborative DDoS
mitigation with smart contracts,” in Proc. IFIP Int. Conf. Auton.
Infrastructure, Manage. Secur., 2017, pp. 16–29.

[15] S. Wani, M. Imthiyas, H. Almohamedh, K. M. Alhamed, S. Almo-
tairi, and Y. Gulzar, “Distributed denial of service (ddos) mitiga-
tion using blockchain—A comprehensive insight,” Symmetry,
vol. 13, no. 2, 2021. [Online]. Available: https://www.mdpi.com/
2073–8994/13/2/227

[16] M. Al-Bassam, “SCPKI: A smart contract-based PKI and identity
system,” in Proc. ACM Workshop Blockchain, Cryptocurrencies Con-
tracts, 2017, pp. 35–40.

[17] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger petersburg version 41c1837 – 2021–02–1,” pp. 1–39, 2019.
[Online]. Available: https://ethereum.github.io/yellowpaper/
paper.pdf

[18] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Proc.
Annu. Int. Cryptol. Conf., 2017, pp. 357–388.

[19] K. W€ust and A. Gervais, “Do you need a blockchain?,” in Proc.
Crypto Valley Conf. Blockchain Technol., 2018, pp. 45–54.

[20] Block.One, Eos.io technical white paper v2, Accessed: Mar. 10,
2021, 2018. [Online]. Available: https://github.com/EOSIO/
Documentation

[21] T. El Gamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in Proc. Adv. Cryptol.,
1985, pp. 10–18.

[22] H. Krawczyk, “HMQV: A high-performance secure Diffie-Hell-
man protocol,” Cryptol. ePrint Arch., Tech. Rep. 2005/176, 2005.
[Online]. Available: https://eprint.iacr.org/2005/176

[23] M.Marlinspike and T. Perrin, “The X3DH key agreement protocol,”
2016, pp. 1–11. [Online]. Available: https://www.signal.org/docs/
specifications/x3dh/x3dh.pdf

[24] M. Fischlin and F. G€unther, “Multi-stage key exchange and the
case of google’s quic protocol,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 1193–1204.

[25] Ethereum.org, Solidity, Accessed: Apr. 18, 2021. [Online]. Avail-
able: https://docs.soliditylang.org

[26] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic
curves of prime order,” in Proc. Int. Workshop Sel. Areas Cryptogr.,
2006, pp. 319–331.

[27] A. S. Cardozo and Z. Williamson, Eip-1108: Reduce alt_bn128 pre-
compile gas costs, Ethereum Improvement Proposals, 2018. [Online].
Available: https://eips.ethereum.org/EIPS/eip-1108

[28] D. R. L. Brown, “Generic groups, collision resistance, and
ECDSA,”Des., Codes Cryptogr., vol. 35, pp. 119–152, 2005.

[29] Pycryptodome, 2021. [Online]. Available: https://github.com/
Legrandin/pycryptodome

[30] N. Sullivan, “Do the chacha: Better mobile performance with
cryptography,” Accessed: May 4, 2021. [Online]. Available:
https://blog.cloudflare.com/do-the-chacha-better-mobile-
performance-with-cryptography/

[31] H. Krawczyk, “Cryptographic extraction and key derivation: The
HKDF scheme,” in Proc. Adv. Cryptol., 2010, pp. 631–648.

[32] Py_ecc, 2021. [Online]. Available: https://github.com/ethereum/
py_ecc

[33] Ethereum.org, Web3.py, 2021. [Online]. Available: https://
github.com/ethereum/web3.py

[34] ConsenSys, Truffle suite, 2021. [Online]. Available: https://www.
trufflesuite.com/

[35] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on for-
mal verification for solidity smart contracts,” in Proc. Australas.
Comput. Sci. Week Multiconference, pp. 1–10, 2021.

[36] D. R. L. Brown, “Sec 2: Recommended elliptic curve domain
parameters,” 2010, pp. 1–37. [Online]. Available: https://www.
secg.org/sec2-v2.pdf

[37] J. Benet, “IPFS - content addressed, versioned, P2P file system
(draft 3),” pp. 1–11, 2014. [Online]. Available: https://raw.
githubusercontent.com/ipfs/papers/master/ipfs-cap2pfs/ipfs-
p2p-file-system.pdf

[38] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A novel batch-
based group key management protocol applied to the Internet of
Things,” Ad Hoc Netw., vol. 11, no. 8, pp. 2724–2737, 2013.

[39] S. H. Islam, M. S. Obaidat, P. Vijayakumar, E. Abdulhay, F. Li, and
M. Reddy, “A robust and efficient password-based conditional
privacy preserving authentication and group-key agreement pro-
tocol for vanets,” Future Gener. Comput. Syst., vol. 84, pp. 216–227,
2018.

[40] Q. Zhang, Y. Gan, L. Liu, X. Wang, X. Luo, and Y. Li, “An authen-
ticated asymmetric group key agreement based on attribute
encryption,” J. Netw. Comput. Appl., vol. 123, pp. 1–10, 2018.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1084804518302704

[41] H. Yao and C. Wang, “A novel blockchain-based authenticated
key exchange protocol and its applications,” in Proc. IEEE 3rd Int.
Conf. Data Sci. Cyberspace, 2018, pp. 609–614.

[42] Y. Hu, Y. Xiong, W. Huang, and X. Bao, “Keychain: Blockchain-
based key distribution,” in Proc. 4th Int. Conf. Big Data Comput.
Commun., 2018, pp. 126–131.

[43] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Ethdkg: Dis-
tributed key generation with ethereum smart contracts,” Cryptol.
ePrint Arch., Tech. Rep. 2019/985, 2019, [Online]. Available:
https://eprint.iacr.org/2019/985

[44] K. Bhargavan, R. Barnes, and E. Rescorla., “TreeKEM: Asynchro-
nous decentralized key management for large dynamic groups a
protocol proposal for messaging layer security (MLS),” [Res. Rep.]
Inria Parishhal-02425247i, pp. 1–20, 2018.

[45] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Security analysis
and improvements for the ietf mls standard for group messaging,”
in Proc. 40th Annu. Int. Cryptol. Conf., 2020, pp. 248–277.

[46] J. Alwen, S. Coretti, Y. Dodis, and Yiannis, “Modular design of
secure groupmessaging protocols and the security ofMLS,” in Proc.
ACMSIGSACConf. Comput. Commun. Secur., 2021, pp. 1463–1483.

[47] J. Alwen et al., “Grafting key trees: Efficient key management
for overlapping groups,” in Proc. Theory Cryptogr. Conf., 2021,
pp. 222–253.

[48] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon,
and R. Robert, “The messaging layer security (MLS) protocol,”
Internet Engineering Task Force, Internet-Draft draft-ietf-mls-pro-
tocol-09, Mar. 2020. [Online]. Available: https://datatracker.ietf.
org/doc/html/draft-ietf-mls-protocol-09

[49] B. B€unz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and ran-
domness beacons in ethereum,” IEEE Secur. Privacy Blockchain,
pp. 1–11, 2017. [Online]. Available: https://jbonneau.com/doc/
BGB17-IEEESB-proof_of_delay_ethereum.pdf

Victor Youdom Kemmoe received the BS and
MS degrees in computer science from Kennesaw
State University, GA, USA, in 2018 and 2020,
respectively. Currently, he is working toward the
PhD degree in computer science with Brown Uni-
versity. From August 2020 to July 2021, he was a
research assistant with the Information and Intel-
ligent Security Laboratory at Kennesaw State
University. His areas of research are cryptogra-
phy and distributed computing.

Yongseok Kwon received the BE degree in com-
puter science and engineering from Hanyang Uni-
versity, South Korea, in 2019. He is currently
working toward the MS-leading-to-PhD degree in
computer science and engineering with Hanyang
University, South Korea. Since 2019, he has been
with the Computer Science and Engineering,
Hanyang University of Engineering, South Korea.
His research interests include AI security, applied
cryptography, and information security and privacy.

3192 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

https://www.mdpi.com/2073--8994/13/2/227
https://www.mdpi.com/2073--8994/13/2/227
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/EOSIO/Documentation
https://github.com/EOSIO/Documentation
https://eprint.iacr.org/2005/176
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf
https://docs.soliditylang.org
https://eips.ethereum.org/EIPS/eip-1108
https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://github.com/ethereum/py_ecc
https://github.com/ethereum/py_ecc
https://github.com/ethereum/web3.py
https://github.com/ethereum/web3.py
https://www.trufflesuite.com/
https://www.trufflesuite.com/
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://raw.githubusercontent.com/ipfs/papers/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://raw.githubusercontent.com/ipfs/papers/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://raw.githubusercontent.com/ipfs/papers/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
http://www.sciencedirect.com/science/article/pii/S1084804518302704
http://www.sciencedirect.com/science/article/pii/S1084804518302704
https://eprint.iacr.org/2019/985
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-09
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-09
https://jbonneau.com/doc/BGB17-IEEESB-proof_of_delay_ethereum.pdf
https://jbonneau.com/doc/BGB17-IEEESB-proof_of_delay_ethereum.pdf

RasheedHussain (SeniorMember, IEEE) received
the BS engineering degree in computer software
engineering from the University of Engineering and
Technology, Peshawar, Pakistan, in 2007, and the
MS and PhD degrees in computer science and
engineering from Hanyang University, South Korea,
in 2010 and 2015, respectively. Heworks as a senior
lecturer with the Smart Internet Lab and Bristol
Digital Futures Institute (BDFI), University of Bristol,
U.K.. He worked as a postdoctoral fellow with
Hanyang University, South Korea from March 2015

to August 2015, and as a guest researcher and consultant with the Univer-
sity of Amsterdam (UvA) from September 2015 till May 2016. He also
worked as assistant professor and associate professor, head ofMSprogram
in Security and Network Engineering (SNE), and the head of the Networks
and Blockchain Lab, Innopolis University, Russia from June 2016 till Decem-
ber 2021. He serves as an editorial board member for various journals
including IEEE Communications Surveys & Tutorials, IEEE Access, IEEE
Internet Initiative, Internet Technology Letters, Wiley, and serves as
reviewer for most of the IEEE transactions, Springer and Elsevier Journals.
He also serves as a technical program committee member of various con-
ferences such as IEEE VTC, IEEE VNC, IEEE Globecom, IEEE ICCVE,
and so on. He is a certified trainer for Instructional Skills Workshop (ISW).
Furthermore, he is a ACM distinguished speaker. His research interests
include information security and privacy and particularly IoTsecurity, digital
twins security, role of AI in cybersecurity, eXplainableAI, fairness in AI, future
internet architecture, and blockchain.

Sunghyun Cho received the BS, MS, and PhD
degrees in computer science and engineering
from Hanyang University, Korea, in 1995, 1997,
and 2001, respectively. From 2001 to 2006, he was
with Samsung Advanced Institute of Technology,
and with Telecommunication R&D Center of Sam-
sung Electronics, where he has been engaged in
the design and standardization of MAC and net-
work layers of WiBro/WiMAX and 4G-LTE sys-
tems. From 2006 to 2008, he was a postdoctoral
visiting scholar with the Department of Electrical

Engineering, Stanford University. He is currently a professor with the
Department of Computer Science and Engineering, HanyangUniversity.

Junggab Son (Senior Member, IEEE) received
the BSE degree in computer science and engi-
neering from Hanyang University, Ansan, South
Korea in 2009, and the PhD degree in computer
science and engineering from Hanyang Univer-
sity, Seoul, South Korea in 2014. From 2014 to
2016, he was a postdoctoral research associate
with the Department of Math and Physics, North
Carolina Central University. From 2016 to 2018,
he was a research fellow and a limited-term
assistant professor with Kennesaw State Univer-

sity. From 2018 to 2022, he was an assistant professor of computer sci-
ence and a director of Information and Intelligent Security (IIS)
Laboratory, Kennesaw State University. Currently, he is an assistant pro-
fessor of computer science with the University of Nevada, Las Vegas.
His research interests include applied cryptography, privacy preserva-
tion, blockchain and smart contract, malware detection, and security/pri-
vacy issues in artificial intelligent algorithms.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

KEMMOE ETAL.: LEVERAGING SMARTCONTRACTS FOR SECURE ANDASYNCHRONOUS GROUP KEY EXCHANGE 3193

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

